Category Archives: Tài liệu tham khảo

Tiếng Anh anh Khờ: 4 Cách học từ vựng để đạt hiệu quả cao

Tiếng Anh anh Khờ: 4 Cách học từ vựng để đạt hiệu quả cao

Học tiếng Anh thế nào cho tốt quả thật là một bài toán nan giải. Với tư cách là dân ngoại đạo (tức là không có học chuyên ngữ), mình xin chia sẻ một vài phương pháp đã giúp mình có được vốn từ vựng tiếng Anh chút chút, đủ đọc, đủ viết, đủ nghe, đủ nói 😉

Video được làm với tinh thần học hỏi và vui nên sai sót khó tránh khỏi, mọi người góp ý cho mình nhé!

[Thống kê căn bản] Bài 4: Phương sai và độ lệch chuẩn, công thức tính và ý nghĩa thống kê

[Thống kê căn bản] Bài 4: Phương sai và độ lệch chuẩn, công thức tính và ý nghĩa thống kê

Phương sai và độ lệch chuẩn là 2 đại lượng thống kê quan trọng, thường được sử dụng khi khảo sát thống kê. Vậy bản chất và cách tính 2 đại lượng này như thế nào? Chúng ta hãy xem video sau để biết được.

Ở thời đại ngày nay, thống kê là một công cụ đắc lực của các nhà Khoa học trong rất nhiều lĩnh vực, Y Sinh học không là ngoại lệ. Những hiểu biết về thống kê sẽ giúp chúng ta khảo sát và đưa ra được các kết luận đúng đắn để có thể vận dụng vào thực tiễn. Do đó, Biomedera Education quyết định xây dựng loạt bài giảng về lý thuyết và thực hành trên các phần mềm thống kê hiện đại nhằm giúp các bạn tiếp cận và sử dụng thành thạo công cụ này trong học tập, làm việc và nghiên cứu khoa học.

Video được thực hiện bởi Nguyễn Thị Huyền Trang – Sinh viên ngành Y học Dự phòng niên Khóa 2009-2015, Đại học Y Dược Huế.

[Thống Kê Căn Bản] Bài 2: Giá trị Trung Bình: Định nghĩa – Công thức tính – Chức năng và Giới hạn

[Thống Kê Căn Bản] Bài 2: Giá trị Trung Bình: Định nghĩa – Công thức tính – Chức năng và Giới hạn

Ở thời đại ngày nay, thống kê là một công cụ đắc lực của các nhà Khoa học trong rất nhiều lĩnh vực, Y Sinh học không là ngoại lệ. Những hiểu biết về thống kê sẽ giúp chúng ta khảo sát và đưa ra được các kết luận đúng đắn để có thể vận dụng vào thực tiễn. Do đó, Biomedera Education quyết định xây dựng loạt bài giảng về lý thuyết và thực hành trên các phần mềm thống kê hiện đại nhằm giúp các bạn tiếp cận và sử dụng thành thạo công cụ này trong học tập, làm việc và nghiên cứu khoa học.

Video được thực hiện bởi Nguyễn Thị Huyền Trang – Sinh viên ngành Y học Dự phòng niên Khóa 2009-2015, Đại học Y Dược Huế.

Tính toán với phần mềm thống kê R [Thống kê căn bản]

Tính toán với phần mềm thống kê R [Thống kê căn bản]

Tính toán với phần mềm thống kê R [Thống kê căn bản]

R là phần mềm thống kê có nhiều tính năng mạnh mẽ, vượt trội hơn nhiều so với các phần mềm khác. Việc tiếp cận R ở giai đoạn đầu có thể sẽ khó khăn với những ai không quen với cách làm việc dựa vào cấu trúc lập trình. Tuy nhiên, nếu duy trì học hỏi, chỉ sau khoảng 4 tháng các bạn hoàn toàn có thể sử dụng R cho các mục đích phân tích thống kê mình cần.

R statistics – Công cụ đắc lực cho các nhà khoa học trong thế kỉ XXI!

Sau khi khởi động phần mềm thống kê R, việc cần làm gì đầu tiên là gì? [Thống kê căn bản]

Các thao tác sử dụng phần mềm thống kê R đơn giản [Thống kê căn bản]

R là phần mềm thống kê có nhiều tính năng mạnh mẽ, vượt trội hơn nhiều so với các phần mềm khác. Việc tiếp cận R ở giai đoạn đầu có thể sẽ khó khăn với những ai không quen với cách làm việc dựa vào cấu trúc lập trình. Tuy nhiên, nếu duy trì học hỏi, chỉ sau khoảng 4 tháng các bạn hoàn toàn có thể sử dụng R cho các mục đích phân tích thống kê mình cần.

R statistics – Công cụ đắc lực cho các nhà khoa học trong thế kỉ XXI!

Dấu run vẫy – ASTERIXIS

ASTERIXIS – also HEPATIC FLAP/FLAPPING TREMOR

Việc tìm một từ tiếng Việt phù hợp dịch ra từ một từ chuyên ngành tiếng Anh không phải lúc nào cũng là dễ dàng. Trong quá trình tìm hiểu về dấu hiệu lâm sàng Asterixis này, người viết đã tham khảo một số tài liệu tiếng Việt. Một số trang như benhhoc.vndieutri.vn đã đề cập đến “Dấu run vẫy” = Asterixis hay Flapping Tremor.

MÔ TẢ:

Bệnh nhân được yêu cầu giơ 2 cánh tay ra phía trước, tạo với thân một góc khoảng 60 độ, với bàn tay gấp về phía lưng (dorsiflexed – dorsi-: lưng, flex: gấp), cổ tay căng ra (extended). Mục đích của động tác này là làm căng cơ gấp cổ tay (là nhóm cơ bị ảnh hưởng nhiều hơn, người khám dễ quan sát sự co cơ tự phát hơn).Người khám tác động bằng cách đẩy bàn tay người bệnh về phía lưng. Bệnh nhân run vẫy cả bàn tay, gọn (brief), không có nhịp điệu (rhythmless), tần số thấp (3-5 Hz). Dấu run vẫy có thể ở 2 bên bàn tay hoặc chỉ 1 bên.

Thuật ngữ “Asterixis” có nguồn gốc từ Hy Lạp: a = not và stērixis = fixed position. Bệnh nhân không duy trì được vị trí cố định và sau đó có thể thấy rõ rung giật (jerking movement) ở khớp cổ tay và nặng nhất là rung giật cả cánh tay. Trong giai đoạn cuối dấu hiệu này khởi đầu với giật các ngón tay từ ngón trỏ, ngón giữa và ngón áp út về phía trục là ngón út. (Lưu ý của thầy Phùng Trung Hùng).

  GI semiology   ASTERIXIS

Các bạn xem thêm video về cách tìm dấu run vẫy:

https://www.youtube.com/watch?v=sEnp2ss8VoA

NGUYÊN NHÂN CỦA DẤU RUN VẪY:

Có thể được tóm tắt cho dễ nhớ bằng 1 mnemonic (a special word used to help a person remember something):

“DRUGS (ABC) FAILED Helping Him”

1. DRUGS (ABC):

– Alcohol

– Barbiturate

– Carbamazepine

2. FAILED:

– respiratory failure

– liver failure

– renal failure

3. Helping : [[[H = HYPO-]]]: hypo-hạ

– hypoglycemia

– hypokalemia

– hypomagnesemia

4. Him: [[[H = HEMORRHAGE]]]: hem/o-: thuộc về máu, -rrhage: chảy máu, xuất huyết

– intracerebral hemorrhage (intra-: trong, cerebral: thuộc về não)

– subarachnoid hemorrhage (sub: dưới, arachnoid: thuộc về màng nhện)

– subdural hematoma (sub: dưới, dural: thuộc về màng cứng,hematoma: huyết tụ)

36 GI semiology   ASTERIXIS

Nguồn: http://dr-hippocampus.blogspot.com/2012/02/causes-of-asterixis-flapping-tremor.html

CƠ CHẾ LIÊN QUAN ĐẾN GAN:

Cơ chế tạo dấu run vẫy do bệnh lý não gan (hepatic encephalopathy – encephal/o: thuộc về não, -pathy: bệnh) còn chưa được biết rõ. Bệnh lý não gan hay hôn mê gan là những rối loạn não thứ phát gây ra do một tình trạng suy gan quá nặng. Một số ít nghiên cứu gợi ý rằng:

  • Những dao động (oscillations) chậm trong vỏ não vận động sơ cấp (primary motor cortex) tạo nên dấu run vẫy nhỏ, mà nguyên nhân có thể là do vấn đề ở chính vỏ não vận động sơ cấp hoặc do bất thường ở các tổ chức khác.

  • Rối loạn chức năng (dysfunction) của hạch nền (basal ganglia) – bao gồm loạn chức năng của vòng vỏ não-đồi thị (thalamocortical loop – thalam/o: thuộc về đồi thị,cortical: thuộc về vỏ, ở đây là vỏ não). Bình thường đồi thị kiểm soát tín hiệu ra từ hạch nền đến vỏ não vận động và quyết định sẽ tiếp tục hoặc dừng/làm chậm một cử động. Khi có tình trạng loạn chức năng của hạch nền hoặc vòng vỏ não-đồi thị, các cử động không còn được kiểm soát tốt và gây ra dấu run vẫy.

22 500x375 GI semiology   ASTERIXIS

GIÁ TRỊ CỦA TRIỆU CHỨNG:

Dấu run vẫy là chỉ điểm cho một số bệnh nặng, bất kể nguyên nhân là gì, và có giá trị tiên lượng hơn là chẩn đoán. Một nghiên cứu đã sử dụng dấu run vẫy như một yếu tố dự đoán tỉ lệ tử vong (mortality) ở bệnh nhân nhập viện vì bệnh gan do rượu (alcohol liver disease). Nghiên cứu này đã kết luận tỉ lệ tử vong là 56% ở những bệnh nhân có dấu run vẫy trong khi tỉ lệ tử vong chỉ là 26% ở những bệnh nhân không có dấu run vẫy.

Di Ni (Anhvanykhoa.com)

TỔNG KẾT MỘT SỐ THÀNH PHẦN CẤU TRÚC TẾ BÀO – SHPTTB

Phùng Trung Hùng – Nguyễn Phước Long

Chúng ta đã trải qua 15 chương cơ sở, dễ dàng nhận ra rằng có một motif phổ quát trong sinh học, đó là sự hình thành các đại phân tử sinh học và cấu trúc từ nhiều tiểu phân tử tương đồng hoặc thậm chí giống hệt nhau thông qua các liên kết cộng hóa trị hay không cộng hóa trị. Ở mục này, chúng ta sẽ ôn lại tổng quát các vấn đề cốt lõi cần nắm.

Ba nhóm đại phân tử sinh học phổ biến và quan trọng nhất trong các hệ sinh học là protein, acid nucleic và polysaccharide. Chúng là polymer của các tiếu phân tử (trong trường hợp này được gọi là đơn phân) liên kết cộng hóa trị với nhau. Protein là polymer mạch thẳng chứa mười cho tới vài ngàn acid amin gắn với nhau bằng liên kết peptide. Acid nucleic là polymer mạch thẳng chứa hàng trăm cho tới hàng triệu nucleotide gắn với nhau theo liên kết phosphodieste. Polysaccharide là polymer mạch thẳng hay nhánh của các monosaccharide (đường), như glucode, gắn với nhau theo liên kết glycoside. Cơ chế các đơn phân liên kết cộng hóa trị tạo thành phức hệ. Liên kết cộng hóa trị tạo thành giữa hai đơn phân thường làm mất H từ một đơn phân và OH từ đơn phân kia, hay nói cách khác là loại một phân tử nước nên có thể xem như phản ứng dehydrate hóa. Những liên kết này bền dưới điều kiện sinh học bình thường, (ví dụ 37oC, pH trung tính) và do đó các polymer sinh học kể trên khá ổn định và có thể thực hiển rất nhiều nhiệm vụ rất đa dạng trong tế bào (lưu trữ thông tin, xúc tác phản ứng hóa học, thành phần cấu trúc xác định hình thành và vận động của tế bào…).

Hình 16.1: Các khối cấu trúc hóa học chính của tế bào

Các đại phân tửa cũng có thể lắp ráp thông qua tương tác không cộng hóa trị. Ví dụ, hàng ngàn tiểu phân tử gọi là phospholipid lắp ráp không cộng hóa trị thành cấu trúc hai lớp của màng tế bào. Trong chương này, chúng ta sẽ tập trung vào tính chất của các đơn vị cấu trúc hóa học – acid amin, nucleotide, đường và phosphorlipid. Các chương sau sẽ đề cập đến cấu trúc, chức năng cũng như sự lắp ghép chức năng cũng như sự lắp ghép tạo thành protein, acid nucleic, polysaccharide và màng sinh học.

Các acid amin chỉ khác nhau trong phần mạch nhánh, 20 loại acid amin là đơn phân cấu thành protein. Sau khi tích hơp thành polymer protein, các acid amin có cấu trúc đặc thù gồm nguyên tử carbon alpha (C ) trung tâm gắn với bốn nhốm hóa học khác: nhóm amine (-NH2), nhóm carboxyl (COOH) nguyên tử hydrogen và một nhóm biến đổi gọi là mạch nhánh hay nhóm R. trừ glycine, carbon α của cácacid amin còn lại có tính bất đối xứng nên tồn tại hai dạng đồng phân là ảnh qua gương của nhau gọi là dạng D(dextro) và L(levo). Không thể hoán chuyển hai đồng phân này mà không phá vỡ sau đó tái tạo liên kêt hóa học nội tại. Ngoài một số rất ít trường hợp, chỉ acid amin dạng L tham gia tạo protein.

Để hiểu cấu trúc lập thể và chức năng của proteinthì cần nhớ một số tính chất đặc thù của acid amin. Mạch nhánh xác định môt phần những tính chất này. Không cần thiết phải nhớ hết cấu trúc chi tiết của mỗi loại mạch nhánh nhưng cần nhớ tính chất chung của từng nhóm acid amin phân theo kích thước, hình dạng, điện tích, tính khử nước và tương tác hóa học của mạch nhánh.

Acid amin với mạch nhánh không phân cực có tính kị nước nên hòa tan kém trong nước. Mạch nhánh càng lớn thì độ kị nước càng cao. Mạch nhánh của alanine, valine, leucine, isoleucine đều là hydrogencarbon mạch thẳng và của methionnine(chứa thêm một vòng nguyên tử lưu huỳnh) đều không chứa mạch vòng, không phân cực. Nhóm R của phenylalanine, tyrosine và tryptophan chứa mạch vòng lớn và cồng kềnh. Chương sau chúng ta sẽ xem xét chi tiết làm thế nào các nhóm kị nước này,dưới ảnh hưởng của hiệu ứng kị nước, thường vùi vào bên trong hoặc lát bên ngoài bề mặt của các protein vùi trong vùng kị nước của màng sinh học.

Acid amin có nhóm R phân cực nằm trong tập hợp các acid amin ưa nước. Tập con của tập hợp này chứa những acid amin có tính ưa nước nhất với nhóm R tích điện (ion hóa) tại pH đặc trưng của dịch sinh học (= 7). Arginine và lysine có mạch nhánh tích điện dương và được gọi là acid amin base. Mạch nhánh của acid aspartic và acid glutamic chứa nhóm COO nên tích điện âm (dạng ion hóa gọi là aspartate và glutamate)và có tính acid. Vì vậy histidine có thể chuyển từ dạng tích điện dương sang dạng không tích điện phụ thuộc vào những biến đổi nhỏ trong độ acid của môi trường.

Do khả năng trên của histidine nên có thể điều khiển hoạt tính của nhiều protein bằng các dịch chuyển độ acid môi trường. Asparagine và glutamine không tích điện nhưng có mạch nhánh chứa nhóm –NH2 phân cực với khả năng tạo liên kết hydrogen mạnh. Tương tự serine và threonine không tích điện nhưng mang nhóm hydrogenxyl phân cực nên có khả năng tạo liên kết hydrogen với phân tử phân cực khác.

Sau cùng, cysteine, glycine và proline có vai trò đặc biệt trong protein vì mạch nhánh của chúng có tính chất đặc biệt. Mạch nhánh của cysteine chưa nhóm sulfhydryl (-SH) hoạt hóa với khả năng  oxy hóa để hình thành liên kết disulfide cộng hóa trị (-S-S-) với cysteine thứ hai :

Các vùng thuộc một chuỗi  protein (nội phân tử) hoặc thuộc các chuổi khác nhau (giữa các phân tử) đôi khi gắn chéo với nhau qua liên kết disulfide. Các liên kết này làm bền cấu trúc gấp nếp của một số protein. Acid amin nhỏ nhất là glycine có nhóm R là một nguyên tửhydrogen, kích thước nhỏ cho phép glycine nằm vừa trong không gian hẹp. Không như các acid amin khác, mạch nhánh của proline uốn lại thành vòng bởi liên kết cộng hóa trị với nguyên tử nito trong nhóm amin gắn Ca. Vì vậy acid amin này rất kém linh động và tạo thành điểm cong cố định trong chuỗi protein, điều này hạn chế vùng khả năng gấp nếp ở vùng protein chứa proline. Một số acid amin có tỷ lệ xuất hiện trong protein cao hơn so với các acid amin khác. Cysteine, tryptophan, và methionine là các acid amin hiếm. Tỷ lệ xuất hiện của cả 3 loại acid amin trong protein chỉ khoảng 5%. Bốn loại acid amin: leucine, serine, lysine, và acid glutamic có tỷ lệ cao nhất, chiếm 32% tổng số gốc acid amin  trong một protein điển hình. Tuy nhiên thành phần acid amin của một protein  nhất định có thể rất khác giá trị này.

Mặc dù các tế bào sử dụng 20 loại acid amin làm nguyên liệu ban đầu để tổng hợp protein nhưng những phân tích chi tiết cho thấy các protein của tế bào chưa trên 100 loại acid amin. Nguyên nhân của điều này là do acid amin trong protein bị biến đổi hóa học. Nhóm acetyl (CH3CO) và một loạt các nhóm hóa học khác có thể gắn đặc hiệu với các acid amin của protein. Một biến đổi quan trọng là phosphate (PO4, phosphoryl hóa ) gắn thêm vào nhóm hydrogenxyl của serine, threonine, và tyrosine. Chúng ta sẽ gặp rất nhiều ví dụ điều hòa hoạt tính protein bởi phản ứng phosphoryl và khử phosphoryl hóa thuận nghịch. Phosphoryl hóa nito trong mạch nhánh của histidine không có gì lạ ở vi khuẩn, nấm và thực vật nhưng có ít nghiên cứu hơn có thể do histidine đã phosphoryl hóa tương đối không bền và rõ ràng là ít xảy ra hơn ở động vật có vú. Mạch nhánh của asparagines, serine, và threonine là vị trí glycosyl hóa. Các biến đổi acid amin khác bao gồmhydrogenxyl hóa proline và lysine trong collagen, methyl hóa histidine trong thụ thể màng, và –carboxyl hóa glutamate trong các yếu tố đông máu như prothrombin.

Hình 16.2: Các bước xác định trình tự chuỗi polypeptide.

Acetyl hóa : nhóm acetyl gắn vào nhóm amin đầu N của protein là dạng biến đổi hóa học acid amin phổ biến nhất, xảy ra ở khoảng chừng 80% protein:

Biến đổi này đóng vai trò quan sát quan trọng đối với sự tồn tại của protein trong tế bào vì các protein không acetyl hóa nhanh chóng bị phân hủy.

Năm loại nucleotide tạo ra acid nucleic

Hai loại acid nucleic có tính chất hóa học tương tự là DNA (acid deoxyribonucleic) và RNA(acid ribonucleic), mang thông tin di truyền của tế bào. Nucleotide là đơn vị cấu thành polymer RNA và DNA. Nucleotide  có cấu trúc chung gồm : một nhóm phosphate liên kết phosphoester với đường pentose(đường 5 carbon), đường pentose lại gắn với base nito (mạch vòng chưa carbon và N) tại nguyên tử N. Pentose của RNA là ribose và của DNA là deoxyribose (ribose có nhóm 2; trong đóOH bị thay bằng 2H). Các base adenine, guanine, và cytosine nằm trong DNA và RNA trong khi thymine chỉ tồn tại ở DNA, và uracil chỉ ở RNA.

Hình 16.3: 4 cấu trúc sống (Theo Lodish’s Molecular Cell Biology 5th)

Adenine (A) và guanine(G) là purine, chứa hai mạch vòng dung hợp; cytosine(C), thymine(T), và uracil (U) là pyrimidine, chỉ chứa một mạch vòng. Trong nucleotide, carbon 1’ của đường (ribose hay deoxyribose) gắn với nito số 9 của purine (N9), hoặc nito số 1 của pyrimidine(N1). Nhóm phosphate quyết định đặc trưng acid của nucleotide. Dưới các điều kiện nội bào bình thường, nhóm phosphate giải phóng H+ nên tích điện âm. Trong tế bào hầu hết nucleotide sử dụng phosphate tích điện âm để tạo liên kết ion với protein.

Đọc toàn bộ bài viết tại đây.

Khái luận về Carbonic anhydrase

ENZYME CARBONIC ANHYDRASE

Đội Rainbow – Vô địch kì thi “Học – Dịch Sinh lý học lần 3”
 Xem và thảo luận chi tiết tại đây.

I. CARBONIC ANHYDRASE

Trước hết mình xin tham khảo vài lời của anh Nguyễn Phước Long trình bày về Carbonic anhydrase trong bài viết ngày 8 tháng 5 năm 2013 trên diễn đàn Đọc sách y sinh.
http://www.docsachysinh.com/forum/index.php?threads/tim-hieu-chuc-nang-cua-nephron.2519/#post-5330

Khi nói đến sự kết hợp của CO2 và H2O để tạo thành H2CO3 trong cơ thể sinh vật, ta cần nhớ vai trò của enzyme xúc tác phản ứng hóa hợp này: Carbonic anhydrase (CA): Tạo HCO3- và H+ trực tiếp.

[IMG]
Nguồn: Linda S.Costanzo, Physiology, 4th edn, Elsevier Saunders, 2010: Fig 7.5, page 306

Bình thường, H2CO3 trong điều kiện dung dịch nước sẽ rất nhanh phân ly thành H+ và HCO3- với hằng số phân ly Ka vào khoảng 10-7 (pKa của carbonic acid là 6.36) (1).
Điều này có nghĩa là phản ứng xảy ra không nhiều, vẫn có một lượng không nhỏ H2CO3 phân tử “không phân cực” tồn tại, và vì không phân cực, nó có thể di chuyển qua các màng tương đối tự do. Thử nghĩ đến trường hợp khi không có CA, phản ứng trên xảy ra “không đáng kể”, H2CO3 sẽ “thoải mái” qua lại các màng, lúc đó thì còn gì là hệ thống thải – thu H+/HCO3- và hệ đệm nữa! Từ đây, có lẽ các bạn có thể tiến thêm một bước nữa về Dược lý, thuốc ức chế CA “bá nghệ” điều trị tăng nhãn áp, tác dụng lợi tiểu, chống động kinh, viêm loét dạ dày tá tràng…

Còn một lưu ý, người ta nói CA xúc tác phản ứng trên theo 2 chiều!
[IMG]
Như vậy, điều kiện nào thì chiều thuận xảy ra, khi nào chiều nghịch ưu thế?
Thực ra chiều nghịch sẽ tự xảy ra khi không có sự hiện diện của CA với tốc độ chậm hơn.

Đào sâu về hóa học protein và động học các tiến trình sinh học:
– CA là một metalloprotein (*) ion điều hành là ion kẽm, một ion hóa trị 2 (là la, thể nào cũng sẽ có vị trí gắn kết và xúc tác rất độc đáo đây!), điều hành hoạt động thông qua việc làm âm hóa tại các vị tríhistidine trong phân tử (vị trí này làm cấu trúc H-O-H của nước trở thành H-O(-)—H(+), rất thuận lợi để tạo HCO3- và H+ trực tiếp từ CO2 và H2O mà không trải qua trung gian H2CO3. Chính vì vậy, phản ứng xảy ra với hằng số vào khoảng 10^6 (một trong những con số nhanh nhất của hệ thống sống) (2).

[IMG]
Từ (1) và (2) ta thấy phản ứng thuận chiều đã được gia tốc thêm 1 triệu lần, làm hằng số tổng hợp lúc này vào khoảng 0.1!
Như vậy phản ứng sẽ xảy ra không quá mạnh (nhanh) nhưng cũng không quá yếu (chậm).

(*) metalloprotein is a protein that has one or more tightly bound metal ions forming part of its structure (Dorland’s Illustrated Medical Dictionary, 32e)

-Sơ lược cấu trúc và chức năng của Carbonic anhydrase:

Có nhiều dạng CA trong tự nhiên.

· Ở đây đơn cử dạng α-CA được nghiên cứu rõ ràng nhất hiện diện ở động vật. Ion Zn2+ kết hợp với vòng nhẫn imidazole (imidazole rings) của 3 phân tử Histidine: His94, His96, His119.
Chức năng chính của enzyme này ở động vật là xúc tác sự chuyển đổi qua lại giữa CO2 và HCO3- để duy trì cân bằng acid-base trong máu và trong các mô khác, và giúp vận chuyển CO2 ra khỏi các mô.
Có ít nhất 14 đồng dạng α-CA khác nhau ở động vật hữu nhũ.

· Thực vật có 1 dạng khác gọi là β-CA, mà theo quan điểm tiến hóa là 1 loại enzyme khác biệt với α-CA, nhưng tham gia vào cùng một phản ứng hóa học và cũng sử dụng ion Zn2+ ở vị trí hoạt động của nó. Ở thực vật, CA giúp tăng nồng độ của CO2 trong lục lạp (chloroplast) để tăng tốc độ carboxyl hóa enzyme RuBisCO. Đó là phản ứng hợp nhất CO2 vào phân tử đường carbon hữu cơ trong quá trình quang hợp, và chỉ có thể sử dụng dạng CO2 từ carbon chứ không thể từ carbonic acid hay bicarbonate.

· CA chứa cadmium (cadmium-containing carbonic anhydrase) được tìm thấy ở các loài tảo cát(diatoms) dưới biển trong điều kiện nồng độ kẽm bị giới hạn. Trên đại dương, nồng độ kẽm thường thấp đến nỗi nó có thể giới hạn sự phát triển của các loài thực vật trôi nổi (phytoplankton) mà điển hình là tảo cát.

[IMG]
Diatoms

Từ đó CA sử dụng một ion kim loại khác để thích nghi với môi trường, và Cadmium được chọn. Về tổng quát, cadmium được đánh giá là một kim loại nặng rất độc mà không có chức năng sinh học gì. Tuy nhiên, dạng CA đặc biệt này xúc tác cho phản ứng sinh học phụ thuộc Cadmium duy nhất được cho là có lợi.

– CA là một cái tên rất chung chung. Có ít nhất 5 họ CA (α, β, γ, δ and ε). Những họ này không có sự tương đồng đáng kể về chuỗi amino acid nhưng lại tham gia vào cùng một loại phản ứng hóa học nên trong phần lớn nghiên cứu người ta cho rằng đây là một ví dụ về sự tiến hóa đồng quy (convergent evolution). Lưu ý rằng ở người chỉ có alpha-CA mà thôi.

* α-CA:
Những enzyme CA được tìm thấy trong động vật hữu nhũ và được phân chia thành 4 tiểu nhóm rộng, mà trong đó bao gồm nhiều đồng dạng.
-CA trong bào tương (cytosolic CA): CA-I, CA-II, CA-III, CA-VII và CA XIII
-CA trong ty thể (mitochondrial CA): CA-VA và CA-VB
-CA tiết (secreted CA): CA-VI
-CA liên kết với màng (membrane-associated CA): CA-IV, CA-IX, CA-XII, CA-XIV và CA-XV
-Có 3 đồng dạng CA “không có vai trò xúc tác” là CA-VIII, CA-X và CA-XI mà chức năng của chúng chưa được biết rõ.

Bảng so sánh các loại Carbonic anhydrase ở động vật hữu nhũ
[IMG]
(*) GPI: Glycophosphatidylinositol
Nguồn:http://en.wikipedia.org/wiki/Carbonic_anhydrase#Structure_and_function_of_carbonic_anhydrase

*β-CA:
Phần lớn CA trong lục lạp và CA ở động vật prokaryot thuộc họ beta.

* γ-CA:
Nhóm gamma-CA có nguồn gốc từ vi khuẩn sản xuất methane sinh sôi vào mùa xuân ấm áp.

* δ-CA:
Nhóm delta-CA tìm thấy trong loài tảo cát như đã nói ở trên. Tuy nhiên những nét đặc trưng của nhóm này vẫn còn nằm trong nghi vấn.

* ε-CA:
Nhóm epsilon-CA có ở vi khuẩn hóa tự dưỡng và nhóm cyanobacteria chứa cso-carboxysomes. Mặc dù ε-CA có cấu trúc gần giống với β-CA, đặc biệt là gần giống vị trí gắn ion kim loại nhưng 2 dạng này có mối liên hệ khá xa nhau.

II. CARBONIC ANHYDRASE INHIBITORS

Mình chỉ xin bàn về Carbonic anhydrase inhibitors tác động lên hai CA ở tế bào biểu mô ống thận: CA-II và CA-IV.

Carbonic anhydrase hiện diện ở nhiều vùng của nephron nhưng vùng ưu thế của enzyme này là ở tế bào biểu mô của PCT, nơi mà nó xúc tác cho sự thuỷ phân H2CO3 thành CO2 ở màng tế bào lòng ống và tái hợp CO2 thành H2CO3 trong tế bào chất như đã được nói đến ở trên. Bằng việc khoá carbonic anhydrase, chất ức chế làm mất khả năng tái hấp thu NaHCO3 và gây ra lợi tiểu.

Thuốc ức chế carbonic anhydrase (carbonic anhydrase inhibitors) là thuốc lợi tiểu hiện đại đầu tiên được phát hiện. Chúng được tìm thấy vào năm 1937 khi người ta nhận thấy thuốc kháng sinhsulfonamides gây ra lợi tiểu kiềm hoá (alkaline diuresis) và toan chuyển hoá kèm tăng cao chloride trong máu (hyperchloremic metabolic acidosis). Với sự phát triển của nhiều tác nhân mới, thuốc ức chế carbonic anhydrase bây giờ hiếm được sử dụng với mục đích lợi tiểu, nhưng chúng vẫn còn nhiều ứng dụng đặc biệt dưới đây.

Thuốc ức chế CA, điển hình là acetazolamide, ức chế sự tái hấp thu sodium bằng cách ức chế không cạnh tranh CA-II và CA-IV trong bào tương của ống thận gần (Hình 1). Sự ức chế CA dẫn đến tăng phân phối NaHCO3 đến đoạn xa của ống thận. Phần lớn sodium bicarbonate sẽ được bài xuất ra ngoài làm giảm thể tích huyết tương cấp tính. Tuy nhiên nếu sử dụng CA inhibitor lâu ngày thì tác động lợi tiểu giảm mạnh vì có sự bù trừ bằng cách tăng tái hấp thu NaHCO3 và tăng tái hấp thu NaCl qua đoạn ống thận xa.

Sử dụng CA inhibitor thường dẫn đến tình trạng toan chuyển hóa từ nhẹ đến vừa, khởi phát không chỉ do ức chế sự bài tiết H+, mà còn do ức chế CA trong tế bào xen giữa loại A (intercalated A cell)ở ống góp (Hình 2).
[IMG]

Hình 1
Nguồn: David E. Golan, Principles of Pharmacology, 3rd edn, Lippincott Williams & Wilkins, Fig 20-6, page 338

[IMG]

Hình 2
Nguồn: http://www.antibodyreview.com

Nước tiểu kiềm hóa, kết quả của quá trình ức chế CA làm tăng sự bài xuất của các anion acid hữu cơ, bao gồm cả aspirin.

Vai trò của Carbonic anhydrase inhibitor trên lâm sàng:

– CA inhibitor thường được sử dụng để khôi phục cân bằng acid-base trong những bệnh nhân suy tim với toan chuyển hóa do sử dụng thuốc lợi tiểu quai.

– Điều trị Gout bao gồm kiềm hóa nước tiểu để tăng tính tan trong nước tiểu của acid uric. Tăng tính tan của acid uric ngăn ngừa sự lắng đọng của acid uric trong nước tiểu, hệ quả là ngăn ngừa được bệnh ống thận do acid uric và sỏi thận. Sự kiềm hóa nước tiểu có thể đạt được bằng cách dùng bicarbonate đường uống, kết hợp với CA inhibitor để giảm sự tái hấp thu của bicarbonate đã được lọc.

– Trèo lên độ cao 3000m so với mực nước biển dẫn đến nhiều cơ quan trong cơ thể, trong đó có não, lâm vào tình trạng phù và mất cân bằng ion. Triệu chứng của bệnh mệt cấp tính do leo núi (acute mountain sickness) bao gồm nôn ói, đau đầu, hoa mắt, mất ngủ, phù phổi, mất tri giác. CA được bao gồm trong việc bài tiết chloride và bicarbonate vào dịch não tủy bởi đám rối mạch mạc của não thất. CA inhibitor có thể được sử dụng để chống lại bệnh mệt cấp tính do leo núi. Cơ chế của tác động này vẫn còn đang được bàn cãi, người ta cho rằng có thể CA inhibitor tác động lên đám rối mạch mạc và tế bào biểu mô nội tủy, lên trung tâm kiểm soát hô hấp ở hành não và lên hàng rào máu não.

– CA inhibitor còn có thể dùng để chữa động kinh, mặc dù cơ chế chống động kinh của một vài trong số nhóm thuốc này không yêu cầu ức chế CA. Một thuốc chống động kinh như thế, Topiramate, có thể gây ra tình trạng nhiễm toan từ nhẹ đến vừa do làm tổn hại sự acid hóa nước tiểu bởi thận.

– CA inhibitor còn có ứng dụng trong nhãn khoa. Biểu mô mi thuộc phòng trước của mắt bài tiết sodium chloride vào thể dịch. Sự bài tiết này đòi hỏi sự có mặt của CA, bởi vì một phần của sự hấp thu Cl- ở màng đáy bên bởi biểu mô mi phụ thuộc vào bơm đối vận Cl-/HCO3- và Na+/H+ cũng như bơm đồng vận Na+/HCO3-. Bơm đồng vận Na+-K+-2Cl- ở màng đáy bên trung gian cho phần lớn Cl- hấp thu bởi tế bào biểu mô mi.

[IMG]

Nguồn:http://80.36.73.149/almacen/medicina/oftalmologia/enciclopedias/duane/pages/v8/ch006/008f.html

Bệnh tăng nhãn áp (Glaucoma) đặc trưng bởi sự tăng áp suất trong phòng trước của mắt, thường kết hợp với tắc nghẽn dòng thể dịch, hoặc trong một số trường hợp là tăng sản xuất thể dịch. Ức chế CA trong tế bào biểu mô mi làm giảm sự bài tiết thể dịch và do đó có thể giảm áp suất đang tăng cao trong mắt. CA inhibitor thường được dùng kết hợp với thuốc đối vận β-adrenergic trong điều trị tăng nhãn áp.

ĐỘC TÍNH

A. Nhiễm toan chuyển hoá kèm tăng cao chloride trong máu (Hyperchloremic Metabolic Acidosis)
Tình trạng nhiễm toan là kết quả của sự suy giảm liên tục lượng HCO3- dự trữ trong cơ thể do thuốc ức chế carbonic anhydrase gây ra và điều này làm giới hạn hiệu quả lợi tiểu của thuốc.Không giống như ảnh hưởng lợi tiểu, tình trạng nhiễm toan vẫn còn duy trì khi thuốc tiếp tục được sử dụng. Trước đây acetazolamide được dùng làm thuốc lợi tiểu, nhưng tác dụng giảm dần khi tiếp tục sử dụng nên phần lớn đã được thay thế bằng các thuốc khác như thiazide và furosemide.

B. Sỏi thận
Trong nước tiểu, lượng phosphate và calcium tăng lên cùng với sự tăng bicarbonate do đáp ứng với thuốc ức chế carbonic anhydrase. Sự bài tiết các nhân tố hoà tan trong thận (ví dụ citrate) cũng có thể sụt giảm khi sử dụng thuốc dài ngày. Muối calcium thì không tan ở pH kiềm, điều này có nghĩa là tăng khả năng bị sỏi thận từ những loại muối này.

C. Mất Potassium từ thận.
Mất potassium (K+) có thể xảy ra bởi sự tăng hấp thu Na+ trong ống góp (cùng với HCO3-) làm điện thế lòng ống đoạn này âm hơn và tăng tiết K+. Ảnh hưởng này có thể được chống lại bằng cách sử dụng đồng thời potassium chloride (KCl) hay thuốc lợi tiểu không làm tăng tiết K+ (K+ sparing diuretic). Việc mất potassium, về mặt lý thuyết, là vấn đề gặp phải của bất kì thuốc lợi tiểu nào mà có sự tăng Na+ đến ống góp. Tuy nhiên, chất đối vận mới với thụ thể adenosine A1 (adenosine A1-receptor antagonists) có thể tránh khỏi độc tính này bằng cách làm giảm sự tái hấp thu Na+ trong ống góp cũng như ống lượn gần.

D. Độc tính khác.
Buồn ngủ và dị cảm thường đi kèm khi dùng một liều lớn acetazolamide. Thuốc ức chế Carbonic anhydrase có thể tích tụ ở bệnh nhân suy thận, dẫn tới nhiễm độc hệ thần kinh. Những phản ứng quá mẫn cảm (sốt, phát ban, mất tuỷ xương (bone marrow suppression) và viêm thận mô kẽ (interstitial nephritis)) có thể xảy ra.

CHỐNG CHỈ ĐỊNH

Thuốc ức chế Carbonic anhydrase gây kiềm hoá nước tiểu làm giảm sự bài tiết NH4+ (bằng cách chuyển nó thành NH3 và tái hấp thu) và có thể góp phần tiến triển tình trạng tăng ammoni máu(hyperammonemia) và bệnh não do gan (hepatic encephalopathy) ở những bệnh nhân xơ gan(cirrhosis).

SHPT – Chu kì tế bào

Nguyễn Phước Long

Tổng quan và giới thiệu

Năm 1858, nhà bệnh học Rudolph Virchow đã đề ra học thuyết tế bào với nội dung “Tế bào được tạo ra từ tế bào trước đó cũng như động vật được sinh từ động vật và thực vật được sinh ra từ thực vật”. Học thuyết này được phát biểu dựa trên các nghiên cứu trên động vật đơn bào, đa bào và cả con người. Theo các nghiên cứu này, hầu hết các tế bào nhân thực đều trải qua nhiều chu kì sinh trưởng và phân chia (chu kì tế bào). Chu trình này có các cơ chế điều hòa rất chặt chẽ, sai sót xảy ra ở các cơ chế này có thể tạo sự phát triển bất thường của tế bào và gây ung thư.

Hình 24.1: Chu kì tế bào gồm 4 pha

Các pha của một chu kì tế bào điển hình

Hai hoạt động chủ yếu của chu kì tế bào là: (1) sự tổng hợp DNA để nhân đôi nhiễm sắc thể trong pha S và (2) sự phân chia tế bào trong pha M. Pha G1 (xảy ra trước pha S và sau pha M) có nhiệm vụ chuẩn bị các vật liệu cho quá trình nhân đôi DNA còn pha G2 (xảy ra sau pha S) tổng hợp vật liệu cho quá trình phân chia tế bào. Pha M là pha diễn ra 2 quá trình quan trọng: (1) Nguyên phân (mitosis): bắt cặp và phân chia nhiễm sắc thể đã được nhân đôi và (2) Phân bào (cytokinesis): phân chia tế bào mẹ thành 2 tế bào con. Nhưng không phải tế bào nào cũng trải qua chu trình như vậy mà vài tế bào dừng lại pha G0, tồn tại ở trạng thái nghỉ hay im lặng(trạng thái không phân chia) và đi vào quá trình biệt hóa. Các tế bào này cũng có thể tiếp tục phân chia khi nhận được các tín hiệu ngoại bào kích hoạt quá trình phát triển.

Các hoạt động diễn ra trong 1 chu kì tế bào

Pha ­G1: Tổng hợp các nguyên liệu cần thiết và điều khiển môi trường ngoại bào, nội bào để chuẩn bị cho quá trình tổng hợp DNA để nhân đôi nhiễm sắc thể. Ở cuối pha này có một điểm kiểm tra (check-point) nếu tế bào đã đủ điều kiện để tổng hợp DNA thì sẽ vượt qua điểm này qua chuyển qua pha S

Pha S: Nhân đôi nhiễm sắc thể. Đây là pha kéo dài nhất trong chu kì tế bào (nếu chu kì tế bào dài 24giờ thì pha S kéo dài từ 10-12 giờ)

Pha G2: Chuẩn bị vật liệu cho (1)phân chia nhiễm sắc thể đã được nhân đôi (nguyên phân) và (2) phân chia tế bào mẹ thành 2 tế bào con (phân bào); điều khiển môi trường ngoại bào, nội bào thích hợp quá trình phân bào. Pha G2 cũng có điểm kiểm tra để kiểm tra xem tế bào đã có đủ điều kiện tiếp tục vào pha S hay không.

Pha M: phân chia nhiễm sắc thể và tế bào. Gồm 5 kì: kì đầu, kì đầu muộn, kì giữa, kì sau, kì cuối. Quá trình phân bào chỉ thực sự bắt đầu diễn ra ở kì sau. Nếu chu kì tế bào dài 24 giờ thì pha M diễn ra trong vòng 1-2 giờ).

Hình 24.2: Tiến trình phân chia của tế bào.

(1)   Kì đầu (prophase): nhiễm sắc thể trong nhân cuộn xoắn và các sợi thoi vô sắc bắt đầu được hình thành từ trung thể ở ngoài nhân.

(2)   Kì đầu muộn (prometaphase): màng nhân vỡ ra, nhiễm sắc thể bám vào thoi vô sắc.

(3)   Kì giữa (metaphase): các nhiễm sắc thể xếp thành hàng trước mặt phẳng xích đạo của thoi vô sắc. Mỗi nhiễm sắc thể trong nhiễm sắc thể đã được nhân đôi (các nhiễm sắc thể kép) hướng về một cực của tế bào

(4)   Kì sau (anaphase): các nhiễm sắc tử chị em trong các nhiễm sắc thể kép phân li về 2 cực của tế bào.

(5)   Kì cuối (telophase):  các nhiễm sắc tử chị em di chuyển đến cực của thoi vô sắc và bắt đầu tháo xoắn. Hai màng nhân mới được hình thành bao quanh 2 bộ nhiễm sắc thể mới để tạo thành 2 nhân con. Tại đây, quá trình nguyên phân kết thúc và bắt đầu quá trình phân bào

Điểm kiểm tra (checkpoints) và quá trình điều hòa chu kì tế bào

Tùy vào mỗi loại tế bào và tùy vào điều kiện môi trường mà các tế bào có các cơ chế điều hòa quá trình phân bào khác nhâu để đảm bảo quá trình này diễn ra một cách bình thường (cụ thể là đảm bào các pha, các kì được diễn ra đúng thứ tự; các quá trình không kéo dài quá mức bình thường; mỗi quá trình chỉ diễn ra 1 lần trong 1 chu kì).

Hình 24.3: Các check point của chu kì tế bào

Các cơ chế điều hòa chu kì tế bào thường được nghiên cứu dựa trên các đột biến trên các gene bất hoạt có vai trò mã hóa các thành phần thiết yếu trong chu kì tế bào ở nấm men. Nhờ vào các nghiên cứu này mà các gene điều khiển chu kì tế bào (cell division cycle genes hay cdc genes) được xác định. Các gene có vai trò tương tự ở tế bào động vật có vú cũng được gọi là cdc gene. Rất nhiều các quá trình điều quá chu kì tế bào đều có sự hiện diện của checkpoint trong đó 2 checkpoint quan trọng nhất là 2 checkpoint ở (1) cuối pha G1 đầu pha S và (2) cuối pha G2 đầu pha M.

Xem toàn bộ bài viết tại đây.

SINH LÝ HỌC TẾ BÀO CƠ

Phùng Trung Hùng – Nguyễn Phước Long – Nguyễn Thị Huyền Trang

Giới thiệu

Hiện tại, sự hiểu biết về các sự kiện phân tử trong quá trình co cơ cơ bản được thể hiện trong mô hình sợi trượt. Mô hình này được áp dụng cho cơ trơn, cơ vân, cơ tim, và các hoạt động co thắt khác, bao gồm các sự kiện hoá-cơ học (mechanochemical) như vận động tế bào và sự nhập bào của thụ thể (receptor endocytosis). Các hoạt động hóa sinh này được hiểu rõ nhất ở cơ vân, bài viết này tập trung vào cơ vân (chú ý, nó cũng thích hợp hoặc khác biệt ở những loại cơ khác). Các đặc điểm sinh hóa phân biệt phản ứng tế bào nhanh và chậm trong mô cơ và là cơ sở sinh hóa của một số trạng thái sinh lý bệnh phổ biến của cơ bắp, bao gồm cả cơn uốn ván, mệt mỏi, và tình trạng co cơ tạm thời sau tử vong (rigor mortis).

Cơ vân chiếm khoảng 40% khối lượng của cơ thể người bình thường và được hình thành từ các tế bào đa nhân, hình trụ dài được gọi là các sợi cơ. Sợi cơ vân chia thành hai loại, co rút chậm (loại I) và co rút nhanh (loại II). Loại sợi II được chia thành loại sợi IIa và IIb. Loại sợi IIa là sợi trung gian co rút nhanh và có thể sử dụng cả hai quá trình trao đổi chất hiếu khí và kỵ khí cho việc sản xuất ATP. Loại sợi IIb là sợi co rút nhanh cổ điển. Các sợi cơ co rút chậm chủ yếu sử dụng quá trình oxy hóa axit béo và chứa một lượng ty thể và mức myoglobin cao. Hai  yếu tố này là lý do khiến sợi co rút chậm có màu đỏ. Sợi co rút nhanh chủ yếu sử dụng quá trình oxy hóa glucose thành pyruvate để sản xuất ATP, chứa ít ty thể và myoglobin hơn sợi co giật chậm và do đó, các sợi này có màu trắng. Vì sợi co rút chậm oxy hóa acid béo nên được gọi là sợi oxy hóa trong khi đó, sợi co rút nhanh sử dụng glucose được gọi là sợi glycolytic. Sợi co rút chậm có khả năng co bóp mở rộng liên tục, do đó chúng không nhanh mỏi. Sợi co rút nhanh sử dụng năng lượng rất ngắn và nhanh nên dễ bị mỏi một cách nhanh chóng hơn so với các sợi co rút chậm.

Hình 27.1: Cấu trúc mao mạch cơ vân

Các màng plasma của các sợi cơ gọi là sarcolemma. Mỗi cơ được tạo thành từ những bó sợi, hay tế bào,gắn kết với nhau bởihệ thống mô liên kết gọi là endomysium (bao gồm mô liên kết, mao mạch, mạch bạch huyết và thần kinh). Các bó sợi với endomysium của chúng được bao quanh bởi một vỏ bọc mô liên kết sợi gọi là perimysium. Tập hợp các perimysium (là các mô liên kết) và bên trong nó được gọi là một fasciculus. Một cơ hoàn chỉnh bao gồm nhiều fasciculi bao quanh bởi một lớp mô liên kết dày bên ngoài gọi là vách ngăn perimysial. Hoạt động co của mỗi sợi cơ trong chuyển động giải phẫu diễn ra thông qua một hệ thống liên tục các mô liên kết và vỏ bọc, mà cuối cùng kếthợp vào các gân.

Trong màng bao cơ sarcolemma là cơ tương (sarcoplasm), có chứa tất cả các phân tử dưới tế bào (subcellular) thông thường cộng với sợi nguyên cơ (myofibrils) dài lồi lên. Mỗi sợi nguyên cơ (myofibril) bao gồm bó sợi protein co, một số kéo dài từ đầu đến cuối trong tế bào. Myofibrils là yếu tố dễ thấy nhất trong các sợi cơ bám xương ghép nên khoảng 60% sợi cơ protein. Một myofibril bao gồm nhiều đơn vị cấu trúc ngắn, được gọi là sarcomeres, sắp xếp từ đầu đến cuối. Các protein tại nơi tiếp giáp giữa các sarcomeres tạo nên vạch Z, và do đó mỗi sarcomere kéo dài dọc theo sợi myofibril từ vạch Z này đến vạch Z kế tiếp.Sarcomeres được cấu tạo chủ yếu bởi các sợi mỏng actin và sợi dày myosin.Sarcomeres là đơn vị co cơ nhỏ nhất. Sự co cơ là sự phối hợp co và kéo dài của hàng triệu sarcomeres trong một cơ cung cấp cho hoạt động cơ học.Mối quan hệ giữa các protein cơ và cơ được tóm tắt trong bảng ở trên.

Tổ chức của Sarcomere

Hình 27.2: Cấu trúc một sarcomere

Tổ chức các sợi đơn protein co ghép lại tạo thành sarcomere là một đặc tính quan trọng trong mô hình sợi trượt co cơ. Mỗi Sarcomere bao gồm tập hợp hàng trăm protein dạng sợi, gọi là myofilament. Hai loại myofilaments được nhận biết dựa vào đường kính cơ bản và thành phần protein (xem hình trên). Myofilaments dày bao gồm vài trăm phân tử protein sợi được gọi là myosin. Myofilaments mỏng gồm hai chuỗi polymer dài cuộn lại với nhau hình xoắn ốc của một protein hình cầu gọi là actin. Sợi mỏng và dày cũng có chứa các protein phụ, được mô tả dưới đây.Protein của vạch Z, bao gồm α-actinin, có chức nănggắn vào chất nền hay neo vào một đầu sợi mỏng, nơi mở rộng về phía trung tâm sarcomeres ở phía còn lại của vạch Z. Các protein vạch Z thường xuất hiện liên tục trên toàn chiều rộng của một sợi cơ và hoạt động để giữ myofibrils trong myofiber trong register. Mỗi sợi mỏng kết thúc tự do ởngoại biên trong cơ tương (sarcoplasm) và bị giới hạn với một protein được gọi là β-actinin.

Cũng được mô tả trong hình trên là tập hợp các protein hình đĩa thứ 2: vạch M nằm ở trung tâm sarcomeres. Giống như protein vạch Z, tập hợp các protein vạch Mgắn vào chất nền, trong trường hợp này là các sợi dày myosin. Sợi dày mở rộng từ điểm gắn trên hai phía của vạch M đến 2 vạch Z là nơi xác định một sarcomere.

Trong sarcomere, các sợi dày và mỏng đan vào nhauvì vậy trong mặt cắt ngang, chúng tạo thành một mạng lưới hình lục giác, trong đó có 6 sợi mỏng sắp xếp bao xung quanh mỗi sợi dày. Các sợi dày cũng được sắp xếp theo hình lục giác với nhau. Trong quá trình co và giãn, khoảng cách giữa các vạch Z khác nhau, giảm khi co thắt và tăng khi giãn. Vạch M, gắn với những sợi dày, vẫn nằm ở trung tâm sarcomere. Các sợi mỏng và dày giữ lại cấu trúc dài mở rộng của chúng ngoại trừ các tình huống đặc biệt. Chiều dài sarcomere thay đổi bởi các sợi mỏng được kéo dọc theo các sợi dày theo hướng của vạch M.

Hình 27.3: (a) Toàn thể tế bào cơ vân. (b) Perimysium. (c) Endomysium.

Protein của các Myofilaments

Hình 27.4: Mô phỏng cấu trúc sợi dày (b) và sợi mỏng (a).

Cơ sở sinh hóa của hoạt động cơ có liên quan đến các tính chất enzyme và tính chất vật lý của actin, myosin, và các protein phụtạo thành các sợi mỏng và dày. Bài viết dưới đây tóm tắt các thành phần protein chính của myofilaments và tương tác ATP-phụ thuộc là nơi phát sinh hoạt động co cơ.

Các protein của các sợi mỏng và dày có thể được chia thành actin, myosin, và 6 protein phụ. Các protein phụ là α-actinin, β-actinin, tropomyosin, troponin, protein C và protein vạch M. Các phân tử hòa tan myosin là các protein dài mỏng (sợi) với trọng lượng phân tử khoảng 500.000 dalton.

Mỗi phân tử được tạo thành 6 tiểu đơn vị, 2 chuỗi rất lớn và nặng (HC), và 4 chuỗi nhỏ hơn và nhẹ (LC).Trong một sợi cơ, 2 tiểu đơn vị lớn là giống hệt nhau, mặc dù có HC đồng dạng khác nhau trong các loại sợi cơ khác nhau.Chuỗi nặngchứa miền xoắn- α thẳng dàiở đầu C(1300 axit amin) và một miền hình cầu đầu Nkhoảng 800 axit amin. Hai HC, miền xoắn ốc-α cuộn vào nhau hình xoắn ốc, các phân tử cấu trúc dài, bền siêu xoắn với 2 phần đầu hình cầu. Một phân tử myosin hoàn chỉnh cũng chứa 4 protein tương đối nhỏ có liên quan với phần đầu hình cầu. Những protein nhỏ, trọng lượng phân tử 16,000-24,000 dalton, được gọi là chuỗi kiềm nhẹ (LC1 hay LC3) và chuỗinhẹ DTNB(LC2). Mỗi phân tử myosin có 2 tiểu đơn vị của LC2, 1 kết hợp với từng miền HC hình cầu.Mỗi miền hình cầu có chứa một tiểu đơn vị của LC1 hoặc LC3, tỷ lệ LC1 và LC3 trong các phân tử myosin khác nhau trong myosins cơ tim, cơ vân, phôi thai, và cơ trơn. Tất cả các chuỗi nhẹ liên kết Ca2+với ái lực cao, được phosphoryl hóa bởi myosin kinase chuỗi nhẹ(myosin light chain kinase) (MLCK), và có chức năng điều hoà chung các hoạt động của myosin ATPase và lắp ráp vào các sợi dày.

Tổ chức myofilaments

Một số điểm mốc có chức năng quan trọng tồn tại trên các phân tử myosin. Gần trung điểm của khu vực siêu xoắn thẳng dài là một vùng được xác định bởi tính mẫn cảm sẵn sàng để tiêu hóa trypsin bằng protein phân giải. Trypsin tách myosin thành 2 phần: 1 có chứa cả phần đầu hình cầu và một số khu vực siêu xoắn, và phần còn lại bao gồm các phần siêu xoắnở đầu carboxy.Phần có chứa phần đầu được gọi là meromyosin nặng (heavy meromyosin (HMM); trọng lượng phân tử 350,000). Mảnh ở đầu C gọi là meromyosin nhẹ (light meromyosin (LMM); trọng lượng phân tử 125,000).

Sự mẫn cảm đối với hoạt động protease của trypsin đóng vai trò quan trọng phản ánh sự gián đoạn ngoài sự siêu xoắn bền ra, còn cho phép vùng nàyhoạt động như là một trong những khớp nối liên quan đến việc chuyển đổi năng lượng hóa học ATP vào các sự kiện cơ học co và giãn. Một mốc thứ hai dễ mẫn cảm với sự thủy phân protein thành papain có cũng được coi là một khớp nối. Papain tách ra 1 vùng rất gần với các phần đầu hình cầu, những sau đó tách để hình thành 2 tiểu mảnh,  mỗi cái gọi là SF-1 (cho tiểu mảnh 1). Phần siêu xoắn còn lại của phân tử được gọi là SF-2. Hoạt động ATPase của myosin liên quan với các đơn vị SF-1.

Một sợi dày bao gồm khoảng 400 phân tử myosin, 200 phân tửphân bố ở mỗi bên vạch M. Các phân tử này được duy trì trong bó protein C (kẹp protein), protein vạch M và sự tương tác kỵ nước của phân tử myosin. Các phân tử myosin gắn chặt lại trong vùng đại diện bởi phần LMM của các phân tử.

Tại điểm bản lề trypsin, meromyosin chuỗi nặng đẩy góc nhọn ra ngoài từ trục chính của sợi dày. Đây là phần mở rộng của meromyosin nặng đi từ trục chính của sợi dày giúp mang phần đầu vào gần các sợi actin mỏng nằm giữa các sợi dày.Các sự kiện phân tử cơ bản trong quá trình co cơ điều hoà sự liên kết phần đầu myosin với sợi actin mỏng, kéo theo bởi sự thay đổi nhanh chóng hình thể myosin về các khớp nối của chúng với phạm vi actin di chuyển đến vạch M.

Tổ chức sợi mỏng Actin

Hình 27.5: Cơ chế co cơ tim bởi kích thích β-adrenergic.

Các sợi mỏng được bao gồm nhiều tiểu đơn vị protein hình cầu G-actin (42 kD) và một số protein phụ. Trong sợi mỏng, G-Actin sắp xếp ngay ngắn tạo thành sợi polyme dài gọi là F-actin. Một cặp sợi F-actin cuộn vào nhau hình xoắn ốc hình thành trục chính của 1 sợi mỏng hoàn chỉnh.

Mỗi tiểu đơn vị G-actin có 1 vùng liên kết ADP/ATP, được cho là có tham gia trong việc hình thành chuỗi polyme ở sợi mỏng. Sau khi polymer hóa, actin bị giới hạn và sợi mỏng ổn định bởi một protein gọi là β-actinin. Ngoài vùng liên kết nucleotide ra, phân tử G-actin chứa một vùng liên kết ở phần đầu myosin có ái lực cao. Trong cơ vân và cơ tim, protein phụ của sợi mỏng (được mô tả dưới đây) điều hoà một cách tự nhiên vùng sẵn có này cho việc liên kết myosin. Vì vậy, các protein phụ điều khiển các sự kiện co thắt.

Protein phụ chính của sợi mỏng là tropomyosin và troponin. Tropomyosin là một heterodimer cuộn vào nhau theo kiểu xoắn αβ như một sợi dây dài mở rộng chiều dài của 7 chuỗi  G-actin dư lượng. Một cặp phân tử tropomyosin có liên quan với mỗi 7 cặp G-actin dư lượng dọc theo một sợi mỏng, 1 phân tử tropomyosin trong mỗi rãnh xoắn F-actin. Khi giãn cơ, mỗi phân tử tropomyosin bao phủ vùng liên kết myosin của 7 chuỗi G-actin dư lượng, ngăn chặn sự tương tác giữa actin và myosin, do đó duy trì trạng thái giãn cơ. Thời gian bắt đầu hoạt động co liên quan đến việc hoạt hoá troponin, protein phụ thứ hai của sợi mỏng. Troponin là một heterotrimer gắn liền với một đầu của mỗi phân tử tropomyosin và actin, gắn kết tropomyosin với actin.

Sự thay đổi hình dạng trong phân tử cầu nối, troponin, chịu trách nhiệm cho việc di chuyển tropomyosin và ngừng các vùng liên kết myosin của actin và do đó điều chỉnh quá trình co cơ. Một trong các tiểu đơn vị troponin, troponin-C (TN-C), là một protein liên kết calci giống như calmodulin.Khi Tn-C liên kết với Calci, toàn bộ phân tử troponin trải qua sự thay đổi hình dạngđể di chuyển gắn với tropomyosin ở vùng liên kết myosin của actin. Việc này cho phép myosin đứng đầu tương tác với vùng liên kết myosin, và hoạt động co cơ diễn ra sau đó.

Các sự kiện xảy ra trên sợi mỏng có thể được tóm tắt như sau: Trước khi xuất hiện Calci tự do trong cơ tương (sarcoplasm), tropomyosin bao phủ vùng liên kết myosin trên actin. Sự xuất hiện của Calci trong cơ tương (sarcoplasm) dẫn đến Calciliên kếttrên Tn-C. Kết quả thay đổi hình dạng troponin dẫn đến các phân tử tropomyosin gắn sâu hơn vào các rãnh xoắn của F-actin, không bao phủ vùng liên kết myosintrên tiểu đơn vị G-actin. Các vùng tiếp xúc sau đó sẵn sàng tương tác với phần đầu myosin. Loại bỏ Calci từ cơ tương khôi phục lại trạng thái cấu trúcban đầu của troponin và tropomyosin, ngăn chặn sự tương tác giữa actin và myosin và kéo theo giai đoạn giãn cơ.

Myosin và sự tương tác các phân tử trong quá trình co cơ

Khi cơ nghỉ ngơi, không co giãn, vùng liên kết myosin trên actin bị che khuất và myosin tồn tạitrong trạng thái cấu trúc năng lượng cao (M *), sẵn sàng để thực hiện một chu kỳ co cơ. Năng lượng của việc thủy phânATP được sử dụng để đưa myosin từ trạng thái cấu trúc năng lượng thấp lên trạng thái năng lượng cao, như mô tả trong phương trình sau đây:

Đọc toàn bộ bài viết tại đây.