Category Archives: Miễn dịch học

CÁC LỘ TRÌNH TÍN HIỆU TẾ BÀO CHÍNH

CÁC LỘ TRÌNH TÍN HIỆU TẾ BÀO CHÍNH

Trọng tâm sinh học phân tử tế bào

Nguyễn Phước Long – Phùng Trung Hùng

Đại cương

Tế bào điều hòa hoạt động của nó thông qua các lộ trình tín hiệu và phần lớn lộ trình trong số đó đã được biết cho đến hôm nay. Trong chương này, chúng ta sẽ cùng nhau thảo luận về các cơ chế điều hòa trong tế bào. Những con đường tín hiệu này được chia làm 2 nhóm chính dựa theo cách nó được hoạt hóa. Phần lớn trong số đó được hoạt hóa bởi các chất ngoại bào và có chức năng truyền tin từ bề mặt tế bào vào trong hệ thống tác hiệu. Tuy nhiên, một vài hệ thống đáp ứng thông tin xuất hiện trong lòng tế bào và thường ở dạng tín hiệu chuyển hóa (metabolic messengers). Trong tất cả các lộ trình tín hiệu, thông tin được vận chuyển thông qua sự tương tác trực tiếp giữa các protein với nhau hoặc  thông qua các phân tử truyền tin thứ hai (second messengers). Trong suôt quá trình phát triển, các loại tế bào khác nhau thường có một số lượng lộ trình tín hiệu riêng và sự tương tác chéo lẫn nhau giữa các lộ trình này là điều rất được quan tâm, cũng như các lộ trình này phải phù hợp với chức năng chuyên biệt của nó. Trong phần này, chúng ta sẽ tập trung vào các thuộc tính của các lộ trình tín hiệu nội bào quan trọng ảnh hưởng đến hoạt động sống của tế bào.

Các lộ trình tín hiệu nội bào

Có rất nhiều con đường lộ trình tín hiệu chịu trách nhiệm truyền tin trong tế bào và chúng được chia làm 2 loại chính. Loại đáp ứng với các chất kích thích ngoại bào (neurotransmitter, hormone hoặc GF) nằm trên bề mặt của tế bào, nhận thông tin qua trung gian các thụ thể. Sau đó, các thụ thể này sẽ chuyển thông tin xuyên màng bằng nhiều chất truyền tin khác nhau để tạo thành các lộ trình tín hiệu khác nhau diễn ra bên trong tế bào sau đó (1-16). Hệ thống tín hiệu của phosphoinositide và Calcium được xếp cùng một nhóm bởi vì chúng có chứa một tập hợp các lộ trình thường có sự tương tác với nhau (2-6). Các nhóm lộ trình khác được kích hoạt bởi các tín hiệu phát sinh trong tế bào (17-18). Ngoài ra còn có một lượng lớn các tín hiệu chuyển hóa hoạt động trong tế bào kích thích một lượng lớn các lộ trình tín hiệu khác nhau.

Tất cả những lộ trình tín hiệu này sinh ra các thông tin nội bào và đáp ứng chuyển tiếp thông tin đến các phân tử đích (sensors) rồi sau đó nối kết với các phân tử tác hiệu để sinh ra các đáp ứng nội bào.

Các lộ trình được liệt kê sau đây:

  1. cAMP: Một trong những hệ thống tín hiệu đầu tiên được phân lập. Trong đó, cAMP đóng vai trò là chất truyền tin thứ hai và tham gia vào nhiều hệ thống truyền tin khác nhau. Theo quan niệm này, các chất kích thích ngoại bào được gọi là các chất truyền tin thứ nhất và chúng có vai trò biến đổi cấu trúc adenylyl cyclase (AC) để tạo ra cAMP – một phần của hệ thống tác hiệu theo kiểu thác đổ xuôi dòng (down-stream).

Hình 41.1: Mô phỏng các lộ trình tín hiệu chính yếu tham gia điều hòa quá trình sống của tế bào.

  1. Hệ thống cADP-ribose (cADPR)và nicotinic acid-adenine di nucleotide phosphate (NAADP) có chức năng trong hệ thống truyền tin của calcium thông qua sự đáp ứng của ADP-ribosyl cyclase (ADP-RC).
  2. Voltage-operated channels (VOCs) tham gia vào tín hiệu calcium bằng cách điều khiển dòng calcium nhập bào trong các tế bào dễ bị kích thích (excitable cells).
  3. Receptor-operated channels (ROCs) tham gia vào tín hiệu calcium bằng cách điều khiển dòng calcium nhập bào của cả các tế bào dễ bị kích thích và các tế bào khác (non-excitable).
  4. Hệ hoạt hóa phospholipase C (PLC) để thủy phân PtdIns4,5P2 (hay còn gọi là PIP2) để sinh ra một số các lộ trình tín hiệu sau:
    1. Inositol 1,4,5-trisphosphate (InsP3)/Ca2+
    2. Diacylglycerol (DAG)/protein kinase C (PKC)
    3. PtdIns4,5P2
    4. Hệ thống inositol polyphosphate đa năng (multipurpose).
  5. Hệ PtdIns 3-kinase có chức năng phosphoryl hóa PIP2 thành dạng chất truyền tin thứ hai là PtdIns3,4,5P3 (PIP3).
  6. NO/clyclic GMP: NOS (NO synthase) tạo ra NO hoạt động thông qua hệ thống cGMP và phản ứng nitrosyl hóa. NO đóng vai trò quan trọng trong việc điều biến hoạt động của các hệ thống tín hiệu khác, như của hệ Ca2+ chẳng hạn.
  7. Hệ thống Redox (oxi hóa khử). Rất nhiều thụ thể hoạt động thông qua NADPH oxidase (NOX) để hình thành nên nguyên tử Oxy hoạt hóa (như trong phân tử H2O2 chẳng hạn), có tác dụng điều hòa hoạt động của các loại protein tín hiệu đặc biệt như tyrosine phosphatases, yếu tố phiên mã và các kênh ion. Các nguyên tử Oxy hoạt hóa cũng tham gia trong phản ứng nitrosyl hóa trong hệ thống 7.
  8. Hệ thống MAPK. Nhóm này là ví dụ điển hình của dòng thác phosphoryl hóa các protein bắt đầu đa phần bởi Ras và bao gồm một số lượng các lộ trình tín hiệu song song nhau có vai trò điều khiển nhiều hoạt động của tế bào và liên quan đặc biệt tới sự tăng trưởng của tế bào, sự stress tế bào và apoptosis.
  9. Hệ thống NF-κB có vô số chức năng khác nhau. Nó đóng vai trò quan trọng trong các đáp ứng viêm của macrophages và neutrophils và như là một phần của các đáp ứng miễn dịch bẩm sinh chống lại các pathogen.
  10. Phospholipase D (PLD) là hệ thống tín hiệu phụ thuộc lipid có liên quan đến sự thủy phân của phosphatidylcholine để cho ra phosphatidic acid (PA), chất này đóng vai trò là chất truyền tin thứ hai trong các quá trình điều hòa của tế bào.
  11. Sphingomyelin được thủy phân bởi các yếu tố tăng trưởng (Growth factors) và cytokines để tạo các chất truyền tin thứ hai có các tác dụng đối lập nhau trong tế bào. Ceramide có vẻ như tham gia vào quá trình apoptosis, ngược lại sphingosine 1-phosphate (S1P) hoạt hóa sự tăng trưởng của tế bào. S1P cũng có thể giải phóng Ca2+ từ lưới nội bào chất hoặc đóng vai trò là tác chất có khả năng gắn vào thụ thể khi được giải phóng khỏi tế bào,… do vậy cơ chế hoạt động của nó cũng rất phức tạp.
  12. Janus kinase (JAK)/hoạt hóa tín hiệu và là chất kích thích của con đường phiên mã STAT. Đây là hệ thống truyền tin nhanh từ bề mặt tế bào vào trong nhân. JAKs là những tyrosine kinase có khả năng phosphoryl hóa dòng thác tín hiệu và hoạt hóa các yếu tố phiên mã (STATs).
  13. Hệ thống Smad. Lộ trình tín hiệu này đóng vai trò trung gian trong hoạt động của siêu họ TGF-β trong quá trình phiên mã thông qua các yếu tố phiên mã Smad.
  14. Lộ trình tín hiệu của Wnt có vai trò quan trọng trong cả sự tăng trưởng và phát triển của tế bào.
  15. Lộ trình tín hiệu Hedgehog tương đồng với lộ trình của Wnt và cũng có chức năng điều hòa sự tăng trưởng và phát triển của tế bào. Ligand của Hedgehog (Hh) hoạt động thông qua yếu tố phiên mã GLI.
  16. Notch là một lộ trình tín hiệu có tính bảo tồn cao, có vai trò quan trọng trong các quá trình phát triển liên quan tới việc quyết định số phận của tế bào trong các tế bào gốc. Các thụ thể Notch tạo ra các yếu tố phiên mã NICD (Notch intracellular domain).
  17. Tín hiệu của lưới nội chất trong các quá trình stress có vai trò chuyển thông tin đến nhân về tình trạng tổng hợp protein trong lưới nội chất hạt.
  18. Lộ trình tín hiệu của AMP được điều hòa bởi AMP đóng vai trò như một dạng tín hiệu chuyển hóa, có vai trò hoạt hóa các lộ trình quan trọng trong việc điều khiển sự biệt hóa của tế bào.

Ngoài ra còn một số lộ trình tín hiệu khác nữa có các chức năng chuyên biệt trong quá trình điều hòa các hoạt động chuyển hóa của tế bào, như là quá trình sinh tổng hợp cholesterol để điều chỉnh lượng cholesterol trong màng tế bào. Hoặc như lộ trình tín hiệu của NAD, NAD+ có vai trò điều hòa các quá trình nội bào như sự chuyển hóa năng lượng, sự phiên mã gene, sửa chữa DNA và các quá trình liên quan đến tuổi già.

Lộ trình tín hiệu của cAMP

Hình 41.2: Mô phỏng sơ khai hoạt động thông qua cAMP.

cAMP là một chất truyền tin thứ hai hiện diện ở tất cả các cơ quan trong cơ thể và tham gia vào vô số các quá trình điều hòa của tế bào. Sự hình thành cAMP thường phụ thuộc vào sự hoạt hóa protein G (G-protein coupled receptors – GPCRs).

Protein G là một dị trimer hóa protein, bao gồm một họ protein được phân loại dựa vào cách nó liên kết với màng tế bào và cơ chế hoạt hóa nó. Họ protein này giúp hoạt hóa enzyme adenylyl cyclase (AC). Có một vài chất tác hiệu tín hiệu cAMP (cAMP signalling effectors) như protein kinase A (PKA), exchange proteins activated by cyclic AMP (EPACs) có khả năng hoạt hóa GTP-binding protein Rap1 và cyclic nucleotide gated channels (CNGCs). Các chất tác hiệu này sau đó biến thông tin chức năng của cAMP thành các đáp ứng, như sự chuyển hóa năng lượng, sự phiên mã gene và hoạt động của các kênh ion. Trong nhiều trường hợp, những chức năng này được điều biến (modulation), cAMP sẽ hoạt động như một chất thiết lập hoạt động của các lộ trình tín hiệu khác và do vậy nó đóng vai trò trung tâm trong sự chồng lấp (cross-talk) giữa các lộ trình tín hiệu với nhau. Chức năng điều biến này cũng thể hiện rõ ở các chuỗi tín hiệu của Ca2+ trong cả tế bào thần kinh và tế bào cơ. Nhiều hoạt động của cAMP phụ thuộc vào vị trí chính xác của PKA, liên quan tới cả các chất tác hiệu ngược dòng (upstream) và xuôi dòng (downstream). Một họ A-kinase-anchoring protein (AKAPs) quyết định sự định cư trong tế bào của PKA cũng như là số lượng thành phần của lộ trình tín hiệu. Các phản ứng OFF – ngắt tín hiệu có vai trò giảm cAMP thông qua quá trình thủy phân cAMP hoặc đưa cAMP ra ngoài tế bào.

Bảng 41.1: AC từ 1 đến 9 được phân bố rộng rãi. Nó có nhiều trong não nhưng cũng phân bố trong nhiều loại tế bào khác. AC10 chỉ có mặt ở tinh hoàn. Hoạt động chức năng điều hòa của AC1-AC9 thông qua G proteins. Tất cả AC được kích hoạt bởi Gαs nhưng chỉ có một số bị bất hoạt bởi Gαi. Tiểu đơn vị βγ cũng có khả năng hoạt hóa vài loại AC và bất hoạt các AC còn lại.  Một vài AC được điều biến bởi một số lộ trình tín hiệu khác như của Ca2+ và PKC. Một vài lại bị bất hoạt bởi PKA do vậy tạo ra vòng tác hồi âm, khiến cho cAMP có thể ức chế chính sản phẩm của nó.

Sự hình thành cAMP

cAMP có thể được tạo thành từ sự kích thích của rất nhiều tác chất khác nhau, mà thông thường là neurotransmitter và hormones. Tất cả các chất kích thích đều tác động thông qua hệ thống GPCRs, có vai trò hoạt hóa hay ức chế enzyme adenylyl cyclase (AC). Trong trường hợp hoạt hóa AC, guanine nucleotide exchange factor (GEF) sẽ thay thế GDP bằng GTP tại tiểu đơn vị α, rồi phân ly tiểu đơn vị này khỏi phức hợp βγ, và tiểu đơn vị αs.GTP sẽ hoạt hóa AC (ngược lại, αi.GTP sẽ ức chế AC). Sau đó, GTPase trên tiểu đơn vị α sẽ thủy phân GTP thành GDP, protein được tái cấu trúc và quá trình hoạt hóa AC kết thúc.

Độc tố tả (cholera toxin) xúc tác đồng hóa trị sự biến thể của Gsα. ADP-ribose được chuyển từ NAD+ thành arginine tại vùng hoạt động của GTPase của Gsα. Sự ADP-ribosyl hóa ngăn sự thủy phân của GTP (prevents GTP hydrolysis) bởi Gsα. Do vậy stimulatory G-protein được hoạt hóa lâu dài.

Độc tố ho gà (whooping cough disease) xúc tác sự ADP-ribosyl tại cysteine của Giα làm nó không thể chuyển GDP thành GTP. Con đường inhibitory bị khóa.

Adenylyl cyclase (AC)

Họ AC bao gồm 10 loại: 9 loại trong số đó là các protein bám màng (1-9), loại thứ 10 tan trong bào tương. Cấu trúc domain của AC1-AC9 tương đối giống nhau. Hai domain lớn nằm trong bào tương là C1 và C2 có chứa vùng xúc tác, tạo thành cấu trúc dị dimer hóa và đồng tác dụng với nhau để chuyển ATP thành cAMP.

Hình 41.3: Cấu trúc domain của adenylyl cyclase (AC). AC1-AC9 có cấu trúc domain giống nhau. Một chuỗi peptide đơn tạo thành các domain xuyên màng (TM), trong đó TM1-TM6 được tập hợp lại cùng nhau, tương tự đối với TM7-TM12. Mỗi TM đều có đều có C1 và C2 – có chứa vùng xúc tác để chuyển ATP thành cAMP. Lưu ý là AC10 không có vùng xuyên màng nhưng vẫn có C1 và C2 nên vẫn có chức năng xúc tác.

Các chất tác hiệu thông tin cAMP

cAMP là một tín hiệu nội bào có sự linh hoạt cao và có khả năng hoạt hóa nhiều chất tác hiệu khác nhau. Một trong những ví dụ của các chất tác hiệu loại này là exchange proteins activated by cyclic AMP (EPACs), có vai trò hoạt hóa Rap. Một nhóm tác hiệu khác là cyclic nucleotide-gated channels (CNGCs) đóng vai trò quan trọng trong hệ thống cảm nhận mùi và vị giác. Tuy nhiên, hầu hết các hoạt động của cAMP đều thông quá protein kinase A (PKA).

Hình 41.4: Tổ chức và chức năng của lộ trình tín hiệu cAMP. cAMP được hình thành từ hệ thống AC bám màng tế bào và cả AC hòa tan nhạy cảm bicarbonate. Sự hình thành được điều hòa cả bởi các agonists hoạt hóa hoạt động thông qua tiểu đơn vị αs và cả agonist bất hoạt αi hay tiểu đơn vị βγ. Nồng độ cAMP gia tăng nhanh chóng và thực hiện chức năng thông qua ba hệ thống tác hiệu khác nhau. Trong đó, chức năng chính của cAMP là hoạt hóa PKA để phosphoryl hóa một lượng lớn các yếu tố trung gian thuận chiều. Một vài quá trình dẫn đến sự phiên mã gene thông qua hoạt động của cAMP respone element-binding protein (CREB) và hoạt hóa các kênh ion (như thụ thể AMPA và CFTR). Các yếu tố trung gian thuận chiều khác cũng có thể là cGMP phosphodiesterase (cGMP PDE), phospholamban (PLN) điều khiển sarco/endo-plasmic reticulum Ca2+-ATPase (SERCA),thụ thể ryanodine (RYR) vàkênh Ca2+ CaV1.1 and CaV1.2

Protein kinase A (PKA)

Nhiều hoạt động của cAMP cần sự tham gia của PKA – có chức năng phosphoryl hóa tại những vị trí đặc hiệu của quá trình tác hiệu xuôi dòng.

Protein kinase A (protein kinase phụ thuộc cAMP) chuyển gốc Pi từ ATP đến gốc hydroxyl của nhóm serine hoặc threonine, đây là phần đặc thù của trình tự 5-amino acid chuyên biệt. Protein kinase A tồn tại ở trạng thái tĩnh (resting state) ở cấu trúc như sau:

–          2 tiểu đơn vị điều hòa (R).

–          2 tiểu đơn vị thủy phân (C).

Đọc toàn bộ bài viết tại đây.

CÁC LỘ TRÌNH “NGẮT” TÍN HIỆU CHÍNH

CÁC LỘ TRÌNH “NGẮT” TÍN HIỆU CHÍNH

Nguyễn Phước Long – Phùng Trung Hùng

Tổng quan

Như ta đã biết, lộ trình tín hiệu “on” có vai trò sản sinh ra các tín hiệu nội bào, ngược lại, các tín hiệu “off” có chức năng hủy bỏ các tín hiệu đó và giúp tế bào ‘trở lại trạng thái nghỉ’. Chúng ta sẽ quan tâm chủ yếu đến hiện tượng bằng cách nào các phân tử truyền tin thứ hai và các effector (protein tác hiệu) bị bất hoạt.

Các phân tử truyền tin thứ hai như cAMP, cGMP đều bị bất hoạt bởi phosphodiesterase (PDE). Lộ trình của inositol trisphosphate (InsP3) không diễn ra được nữa nếu có sự hiện diện của inositol trisphosphatase và inositol phosphatase. Trường hợp tín hiệu của Ca2+ phụ thuộc nhiều vào các kênh và các tải Ca2+ (là cách nói tắt, hay phải gọi chính xác hơn là protein tải vận Ca2+)  trong đó ti thể chiếm vai trò quan trọng (đã đề cập ở một chương khác).

Một nguyên lý chung cần nhớ là, rất nhiều các phân tử truyền tin thứ hai và effector hoạt hóa nhờ hiện tượng phosphoryl hóa bởi các kinase/phosphorylase, bị bất hoạt bởi hiện tượng khử phosphoryl với hóa xúc tác là các phosphatase.

Tuy nhiên, có những gốc phosphate được gắn vào có chức năng bất hoạt protein. Do vậy không nên hiểu một cách cứng nhắc rằng loại bỏ gốc phosphate chỉ có vai trò bất hoạt.

Protein phosphatase

Bộ gene người tổng hợp được khoảng 2000 loại protein kinase khác nhau có vai trò trong rất nhiều lộ trình tín hiệu. Đối kháng lại tác dụng của nó là một lực lượng cân xứng phosphatase. Các phân tử này được chia làm 2 nhóm chính.

Protein tyrosine phosphatase (PTPs)

Hiện tượng phosphoryl hóa tyrosine thường hữu của protein chỉ chiếm khoảng 0.1% tổng số khả năng phosphoryl hóa protein trong tế bào.  Tuy nhiên, nó lại chiếm vai trò lớn vì tham gia vào các lộ trình tín hiệu chính, điều hòa sự tăng trưởng và phát triển của tế bào. Hiện tượng phosphoryl hóa tyrosine tăng lên từ 10 – 20 lần khi tế bào bị kích thích bởi các growth factor hoặc trải qua quá trình biến đổi ung thư hóa. Chính điểm này làm nổi bật lên vai trò của PTPs.

Cấu trúc và chức năng của PTPs cho thấy rằng các enzyme này thuộc về họ heterogeneous. Siêu họ protein này được chia làm 2 họ nhỏ hơn là PTPs cổ điển và DSPs (dual-specificity phosphatase).

Cấu trúc và chức năng

Các thành viên có cấu trúc rất khác nhau. PTP cổ điển còn được phân chia thêm thành các PTPs không xuyên màng (non-transmembrane PTPs) và PTPs loại thụ thể (receptor-type PTPs). Tuy nhiên, tất cả các phosphatase đều có chung một motif là H-C-X-X-G-X-X-R nằm ở domain xúc tác. Các thành tố cấu trúc khác (SH2, PDZ và immunoglobin-like domain) có vai trò điều hòa hoạt động của enzyme và giúp enzyme hiện hữu ở gần nơi có cơ chất đặc hiệu của nó.

Hình 42.1: Tổng quan về siêu họ PTP.

Tất cả các PTPs đều dùng chung một cơ chế xúc tác. Trong quá trình, gốc phosphate ở cơ chất đầu tiên được chuyển đến tiểu phân cysteine ở motif xúc tác trước khi bị thủy phân bởi nước để giải phóng anion phosphate. Cách thức hoạt động này của tiểu phân cysteine trong phản ứng chuyển đổi phosphate này là một ví dụ của quá trình nhạy cảm oxi hóa (oxidation-sensivite process) – vốn là mục tiêu của lộ trình tín hiệu redox. Một vài phân tử tín hiệu thuộc họ ROS thực hiện chức năng được là nhờ vào sự bất hoạt các PTPs này.

Trong lộ trình tín hiệu redox, cysteine bị oxy hóa và làm giảm hoạt tính của PTPs. Quá trình bất hoạt phosphatase do cảm ứng oxi hóa góp phần tăng cường luồng tín hiệu xuôi dòng của tyrosine như MAPK và Ca2+ chẳng hạn.

PTP cổ điển

PTP không xuyên màng

Các protein này thuộc họ heterogeneous có chung domain PTP nhưng có thêm các thành tố khác quyết định vị trí hiện diện cũng như chức năng của nó trong tế bào. Một vài thành viên thuộc nhóm này là:

–          Protein tyrosine phosphatase 1B (PTP1B). Protein này có domain PTP tiêu biểu ở đầu N và vùng điều hòa ở đầu C. Đầu C có chứa một vùng kị nước – là thành phần giúp gắn enzyme vào ER. Mặc dù được cố định vào ER, một vài cơ chất chính của PTP1B là các thụ thể tyrosine kinase (như thụ thể EGF, thụ thể insulin và non-receptor tyrosine kinase c-Src). PTP1B cũng là thành phần của JAK/STAT như STAT5a và STAT5b. PTP1B đóng vai trò quan trọng trong việc ổn định hóa các phức hợp cadherin vì chúng loại nhoscm phosphate của tyrosine trên β-catenin. Để gắn được vào cadherin, PTP1B phải được phosphoryl hóa ở tiểu phân Tyr-152 bởi protein tyrosine kinase không thuộc loại thụ thể.

Hình 42.2: Cơ chế xúc tác của protein tyrosine phosphatase. Vùng xúc tác có chứa 3 tiểu phân (cysteine, aspatate và glycine) – là 3 amino acid cần thiết cho quá trình xúc tác. A) đoạn peptide có chứa phosphotyrosine đi vào vị trí. Tiểu phân aspatate có vai trò cho proton (gốc phenolate là nơi nhận và nó cũng là nhóm rời khỏi cấu trúc cơ chất). B) Khi gốc phosphate đã được chuyển đến gốc cystein, cơ chất rời khỏi enzyme và bước cuối cùng là sự thủy phân gốc phosphate. Sự liên hợp của một phân tử nước và glycine giúp sự thủy phân gốc phosphate xảy ra dễ dàng hơn. Khi gốc phosphate rời khỏi, vị trí tác động sẵn sàng để tiếp tục xúc tác cho phản ứng tiếp theo.

–          T cell protein tyrosine phosphatase (TC-PTP) có cấu trúc tương tự PTP1B nhưng tác dụng lên loại cơ chất khác. TC-48 có một domain kị nước giống với  PTP1B và cũng gắn kết vào ER. Mặt khác, TC-45 không có domain kị nước nhưng có một tín hiệu định vị nhân (nuclear localization signal, NLS) đưa nó trực tiếp vào nhân. Khi tế bào được hoạt hóa bởi EGF, TC-45 rời khỏi nhân và tương tác với phức hợp thụ thể của EGF để tác dụng lên Shc.

Hình 42.3: Cấu trúc của SHP-1 và SHP-2. Cấu trúc của 2 phân tử này rất giống nhau. Cả 2 đều có 2 domain SH2 ở đầu N. Đầu C có 2 tyrosine. Đặc biệt, SHP-2 có một domain rất giàu prolyl.

–          SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1) có chứa 2 domain SH2 ở đầu N. Cần phân biệt phân tử này với SH2 domain-containing inositol phosphatase (SHIPs) – có vai trò trong việc hình thành nên inositol polyphosphate 5-phosphatase type 2. Chức năng cơ bản của SHP-1 là ức chế lộ trình tín hiệu của tyrosine được phosphoryl hóa. Hầu hết các hoạt động của nó trực tiếp đối kháng lại các lộ trình tín hiệu của các tế bào tạo máu. Nó tự gắn mình vào phức hợp truyền tin ở domain SH2, do vậy cho phép domain PTP khử phosphoryl hóa phosphotyrosine. Ngoài ra, SHP-1 có thể gắn kết vào nhiều thụ thể bất hoạt (inhibitory receptor), góp phần ức chế lộ trình tín hiệu của kháng nguyên và integrin. Ví dụ, SHP-1 cùng với thụ thể FcγRIII bất hoạt thụ thể FcεRI ở tế bào mast. Cuối cùng ta cần biết rằng SHP-1 còn tham gia vào quai tác hồi quan trọng tồn tại giữa ROS và Ca2+.

–          SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) có cấu trúc tương tự SHP-1 nhưng có chức năng rất khác. Thay vì có tác dụng ức chế, nó thường có tác dụng hoạt hóa hoạt động của nhiều thụ thể cho growth factor (như EGF, FGF, insulin, integrin và có thể là PDGF).

Hình 42.4: Sơ đồ không gian và thời gian trong cơ chế hoạt hóa tế bào T. Tín hiệu bắt đầu ở vị trí trên bên trái với hiện tượng gắn kết kháng nguyên/MHCII đến phức hợp TCR. Thông tin được truyền vào trong nhân để hoạt hóa phiên mã. IL-2 được tạo ra tạo thành vòng tự tiết hoạt hóa lộ trình tín hiệu của thụ thể IL-2 và hoạt hóa sự tổng hợp DNA.

PTP loại thụ thể (RPTPs)

Chúng là loại protein có domain xuyên màng do vậy được gắn vào màng tế bào. Mặc dù những enzyme này được gọi là loại thụ thể, người ta không xác định được nhiều lắm ligand của nó. Hầu hết chúng là các phân tử kết dính và do vậy được hoạt hóa bởi các phân tử trên bề mặt tế bào từ tế bào lân cận. RPTPμ và RPTPκ tạo tương tác ưa nước với các phân tử đối diện với tế bào. Các thành viên chính của loại này là:

–          CD45 là một PTP điển hình có một domain ngoại bào được glycosyl hóa. Ở nội bào, nó có 2 PTP domain nhưng domain thứ 2 không có hoạt tính xúc tác. CD45 có chức năng chính trong lộ trình tín hiệu của tế bào T. Cụ thể nó hoạt hóa Lck (một phân tử truyền tin của tế bào T) bằng cách loại bỏ một gốc phosphotae ức chế ở vị trí tyr-505. Ngoài ra, CD45 còn có chức năng hoạt hóa BCR bằng cách kích hoạt Lyn.

–          Protein tyrosine phosphatase α (PTPα) hoạt hóa họ Src không phải thụ thể (non-receptor Src family) bởi việc loại bỏ gốc phosphate ức chế.

–          Leucocyte common antigen-related (LAR) có nhiều chức năng phát triển đặc hiệu. Ví dụ như biệt hóa phế nang chẳng hạn. Ngoài ra nó còn giúp phát triển vùng não trước và hippocampus.

Dual-specificity phosphatase (DSP)

Hình 42.5: Mô hình hoạt động của DSP. Trong đó T là threonine và Y là tyrosine. MEK1/2 có chức năng phosphoryl hóa. Sự tương tác giữa ERK2 và MKP-3 phụ thuộc vào kinase interaction motif (KIM) ở vị trí đặc biệt trên ERK. Ví dụ này cho ta thấy rằng, để thiết lập một đáp ứng tín hiệu xuôi dòng là không phải đơn giản.

Như tên gọi của chúng, DSP là một phosphatase đặc hiệu kép. Nghĩa là, nó có thể khử gốc phosphate của cả phosphotyrosine (pTyr) và phosphoserine/phosphothreonine (pSer/pThr). Các thành viên trong nhóm này gồm:

–          Cdc25 ở người được chia làm 3 loại là Cdc25A, Cdc25B và Cdc25C. Enzyme này lần đầu tiên được mô tả là phân tử điều hòa chu kì tế bào ở tảo. 3 isoform ở người cũng đóng vai trò điều hòa chu kì tế bào bằng cơ chế kiểm soát giai đoạn đi vào pha S (Cdc25A) và giai đoạn đi vào nguyên phân (Cdc25B và C). Nồng độ của Cdc25A tăng ở giai đoạn trễ của G1 và giữ vững suốt giai đoạn nghỉ của chu kì tế bào. Nồng độ Cdc25B được tăng trong suốt pha S để hoạt hóa tế bào đi vào nguyên phân rồi trở về bình thường sau khi nguyên phân hoàn thành. Nồng độ Cdc25C thì giữ ở mức cao suốt chu kì tế bào. Cả 3 isoform đều có vùng C xúc tác chung, đầu N điều hòa khác nhau giữa từng thành phần. Hoạt tính của Cdc25 được điều hòa bởi cả sự phosphoryl hóa hoạt hóa và ức chế. Cả 3 isoform đều chứa 1 vị trí gắn gốc phosphate để điều hòa sự gắn của protein 14-3-3 – có vai trò ức chế enzyme này. Vị trí bất hoạt này được phosphoryl hóa bởi các enzyme được hoạt hóa bởi stress tế bào, thường là trong trường hợp tổn thương DNA. Đây là cơ chế ức chế Cdc25 quan trọng cho cả G1 và G2/M có vai trò gây ngừng chu kì tế bào (cell cycle arrest).

Hình 42.6: Tóm tắt vai trò của Cdc25 trong kiểm soát chu kì tế bào. Khác với thành phần B và C, Cdc25A do tăng sự tổng hợp DNA, nó được gọi là một oncogen, do vậy phải được điều hòa chặt chẽ bởi  trục các yếu tố p53-p21-Cdk.

  • Sự biểu hiện của Cdc25A được kiểm soát bởi E2F. Khi Cdc25A biểu hiện ở bào tương, nó có khả năng kích hoạt CDK2 (cyclin-dependent kinase 2) để tăng tổng hợp DNA. Hoạt năng của Cdc25A rất nhạy cảm với sự tổn thương của DNA (khi bị tổn thương, DNA kích hoạt CHK1 và CHK2 (checkpoint kinase) để phosphoryl hóa Ser-123, kết quả là dừng nguyên phân do Cdc25A bị ubiquitin hóa và phân giải. CHK1 cũng phosphoryl hóa thr-507 của Cdc25A để nó liên kết với protein 14-3-3 và bị bất hoạt cho đến khi nào tế bào cần nó.
  • Cdc25B đóng vai trò quan trọng đối với quá trình nguyên phân được kiểm soát bởi cyclin B. Phân tử này loại bỏ gốc phosphate của Cdc2 do vậy cần thiết để giúp tế bào đi vào nguyên phân. Cũng giống như các Cdc25B khác, Cdc25B bị ‘bất hoạt’ khi bị phosphoryl hóa ở vị trí Ser-323/tạo vị trí gắn cho protein 14-3-3. Vị trí này được phosphoryl hóa bởi lộ trình của p38 và cung cấp điều kiện cho lộ trình tín hiệu của MAPK làm dừng chu kì tế bào.
  • Cdc25C bị ‘bất hoạt’ khi bị phosphoryl hóa ở Ser-216/tạo vị trí gắn cho protein 14-3-3. Trong quá trình đi vào nguyên phân, phosphate ức chế này được loại bỏ và làm cho Polo-like kinase phosphoryl hóa vị trí khác của vùng điều hòa, cho phép Cdc25C khử gốc phosphate của CDK1-activating kinase.

–          Mitogen-activated protein kinase (MAPK) phosphatase (MKPs) gồm 10 thành viên có chức năng chuyên biệt trong lộ trình tín hiệu của MAPK. Một trong những sự kiện cuối cùng của lộ trình tín hiệu này là sự phosphoryl hóa MAPK bởi một dual-specificity MAPK kinase – gắn gốc phosphate vào cả tyrosine và Threonine. Trong pha phục hồi, các gốc phosphate này phải được loại bỏ bởi MAPK phosphatase. Trong 10 thành viên MAPKP, chỉ có vài thành phần cơ hữu, các thành viên còn lại được cảm ứng sinh ra khi tế bào được kích thích và đều góp phần vào quai tác hồi âm. Một ví dụ của trường hợp này là lộ trình tín hiệu đi qua ERK (extracellular-signal-regulated kinase). Các phosphatase này còn thường có độ đặc hiệu cao với một số phân tử đích. Ví dụ điển hình là MKP-3, đặc hiệu cho ERK2. Ở neuron, như neuron sống giữa (medium spiny neurons) ở thể vân (striatum) chẳng hạn, có biểu hiện STEP (striatal-enriched protein tyrosine phosphatase), chúng đóng vai trò đặc hiệu trong lộ trình tín hiệu MAPK của neuron. Trong đáp ứng với kích thích của NMDA, dòng Ca2+ tăng lên tác động vào calcineurin (CaN) để khử gốc phosphate và hoạt hóa STEP để hiệp đồng ức chế lộ trình tín hiệu của phospho-ERK. Ngược lại, sự tăng nồng độ của Ca2+bởi VOCs (voltage-operated channel) hoặc giải phóng Ca2+ nội bào không có tác động gì của STEP, điều đó chứng tỏ rằng STEP và NMDA có sự liên hệ chặt chẽ.

Đọc toàn bộ bài viết tại đây.

CÁC KHIẾM KHUYẾT TÍN HIỆU VÀ BỆNH TẬT

CÁC KHIẾM KHUYẾT TÍN HIỆU VÀ BỆNH TẬT

Phùng Trung Hùng – Nguyễn Phước Long 

Tổng quan

Có nhiều bệnh tật sinh ra do các khiếm khuyết về lộ trình tín hiệu trong tế bào và biểu hiện cũng vô cùng phong phú. Các sinh vật gây bệnh hay virus có thể can thiệp vào các quá trình truyền tin và gây ra sự rối loạn sau đó. Mục “Hiện tượng tái cấu trúc hệ thông tin và bệnh tật” sẽ cho chúng ta cái nhìn tổng quan về cơ chế gây ra sự khiếm khuyết thông tin và các bệnh tương ứng. Các bệnh nặng ở người như cao huyết áp, bệnh tim mạch, đái tháo đường và các thể rối loạn tâm thần  đều có liên quan đến sự nảy sinh của các lộ trình điều chỉnh kiểu hình  một cách tinh vi (phenotypic modification of signaling pathways). Khi sự điều chỉnh này xảy ra, hiện tượng tái cấu trúc kiểu hình gây ra các biến đổi hoạt động chức năng của tế bào và rồi dẫn đến tình trạng bệnh tật. Thật sự rất khó để có thể thiết lập được chính xác mối quan hệ giữa các khiếm khuyết thông tin dẫn đến bệnh tật. Tuy nhiên, đã có một số ít các quá trình được hiểu tương đối có hệ thống và đã mang lại thành công trong các phương pháp điều trị tương ứng.

Ngoài ra người ta còn quan tâm đến hiện tượng điều chỉnh kiểu gene (genotypic modifications) đến từ quá trình đột biến các tế bào sinh dưỡng (somatic) và tế bào mầm (germline). Các nghiên cứu dần hé lộ triển vọng trong chẩn đoán sớm và điều trị. Tuy nhiên, rất khó có thể chữa dứt điểm các bệnh tật có sự liên hợp đột biến của nhiều gene.

Từ những điều trên, chúng ta cũng đã phần nào hiểu được sự quan trọng và cần kíp của việc phải tìm hiểu nhiều hơn những tình trạng bệnh này ở mức độ phân tử để có thể tạo ra các phương pháp chữa trị hiệu quả.

Chương này tập trung vào việc phân loại và giới thiệu một số hình ảnh minh họa điển hình.

Các vi sinh vật gây bệnh và virus

Các vi sinh vật và virus gây bệnh này sử dụng tác nhân gây độc của nó tác động vào các quá trình tín hiệu, gây ra biến đổi chức năng ở các tế bào đặc hiệu:

–          Bệnh lỵ khuẩn que (bacillary dysentery) gây ra bởi Shigella flexneri. Chất độc của vi khuẩn này ngăn cản quá trình tái cấu trúc sợi actin bởi tác động của PtdIns4,5P2 và còn có khả năng hoạt hóa lộ trình tín hiệu PtdIns 3-kinase.

Shigella flexneri gây ra sự xáo trộn các lộ trình tín hiệu của tế bào chủ để giúp nó dễ dàng xâm nhập vào tế bào và sinh độc tố. S. flexneri xâm nhập vào tế bào chủ cùng với protein tác hiệu IpgD (Có chức năng thủy phân PtdIns 4,5P2 thành PtdIns5P). Quá trình xâm nhập của vi khuẩn vào tế bào trở nên dễ dàng khi nồng độ PtdIns4,5P2 giảm xuống đến mức kiệt quệ (vì nó là chất điều hòa sự tái cấu trúc của sợi actin). Hơn nữa, PtdIns5P sau khi tạo ra sẽ hoạt hóa lộ trình PtdIns5P – có thể điều hòa một số hoạt động của tế bào chủ, cụ thể như hoạt hóa PtdIns 3-kinase lớp IA và hậu quả là tế bào không có apoptosis. (Nên nhớ rằng lộ trình PtdIns 3-kinase là một quá trình điều hòa apoptosis liên quan đến hormone rất mạnh)

–          Bệnh tả (cholera) gây ra bởi vi khuẩn Gram (-) Vibrio cholerae. Vi khuẩn này tiết độc tố tả (cholera toxin, CT), nó gây ra hiện tượng mất nước nhiều, nôn ói và chuột rút (muscle cramps) vì CT hoạt hóa lộ trình tín hiệu cAMP.

CT có một tiểu đơn vị xúc tác A và năm tiểu đơn vị B. Các tiểu đơn vị B gắn độc tố tả vào bề mặt của tế bào với gangliosode GM1 và nhờ vậy tiểu đơn vị A được đưa vào bên trong tế bào biểu mô ruột non. Tiểu đơn vị A xúc tác chuyển ADP-ribose từ NAD tới amino acid arginine ở tiểu đơn vị α của Gs. Sự ADP ribosyl hóa này làm cho Gs không thể thủy phân GTP được nữa, do vậy G protein bị khóa lại và nó luôn ở trong trạng thái hoạt hóa nên kích thích quá trình tiết của ruột non không ngừng.

–          Bệnh Chlamydia gây ra bởi Chlamydia trachomatis do nó có khả năng ức chế hiện tượng thực bào của macrophages.

–          Bệnh Listeriosis gây ra bởi Listeria monocytogenes – một vi khuẩn grame (+) có khả năng sống trong macrophages vì có khả năng “trốn” khỏi màng của lysosome của macrophages.

–          Loét dạ dày gây ra bởi Helicobacter pylori.

Loét dạ dày do acid sinh ra quá mức và hủy hoại lớp niêm mạc dạ dày. HP gắn vào bề mặt của tế bào biểu mô bởi nhiều protein kết dính. Ligand của CagA (CagL)có motif RGD giúp nó gắn được với phức hợp integrin α5β1 trên bề mặt màng tế bào, do vậy hoạt hóa được lộ trình tín hiệu của integrin tạo điều kiện cho CagA (một oncoprotein) được đưa vào tế bào và được hoạt hóa tại đây.

Khi vào được tế bào biểu mô, CagA tương tác với  các protein điều hòa tại đó, phá vỡ các liên kết vòng bịt bằng cách liên kết với ZO-1, JAM và họ enzyem serine-threonine kinase: “partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase” (MARK). Quá trình này dẫn đến mất tính phân cực của tế bào, gây loét, viêm và có thể dẫn đến ung thư dạ dày.

Cơ chế gây tăng tiết acid của HP vẫn còn chưa rõ ràng. Người ta tìm được bằng chứng về các tác động của nó đến quá trình tiết gastrin, ảnh hưởng đến quá trình điều hòa của tế bào D, tế bào G đối với sự tiết acid của tế bào thành.

–          Bệnh lao (tuberculosis) gây ra bởi Mycobacterium tuberculosis vì nó có khả năng ức chế quá trình trưởng thành của thể thực bào (phagosome maturation).

Khi một tác nhân gây bệnh bị chuyển vào túi thực bào, nó sẽ bị giết bởi các enzyme thủy phân. M. tuberculosis phá vỡ quá trình này bằng cách tắt dòng tín hiệu Ca2+. Sự ức chế này được cho là có phụ thuộc vào lipoarabinomannan (LAM, cũng thuộc PAMPs) được giải phóng từ vi khuẩn. LAM hoạt động thông qua thụ thể Toll-like 2 (TLR2), tác động trực tiếp tới hoạt động của phospholipase D trong giai đoạn sinh ra chất truyền tin huy động Ca2+ có tên là sphingosine 1-phosphate (S1P). tuy nhiên, vi khuẩn lao cũng có thể bị giết bởi đại thực bào nếu ATP hoạt hóa các hệ thống thông tin Ca2+ có nguồn gốc ngoại bào qua thụ thể P2x7.

 

Hiện tượng tái cấu trúc hệ thông tin và bệnh tật

Tất cả các tế bào đã biệt hóa đều có một hệ thông tin (signalsome) có vai trò tạo ra các tín hiệu đầu ra bình thường để duy trì chức năng của nó. Tình trạng bệnh lý có thể là hậu quả của một quá trình tái cấu trúc hệ thông tin cả về kiểu hình (phenotypic) và kiểu gene (genotypic).

Một trong những điều quan trọng khi tìm hiểu về mối quan hệ giữa hiện tượng tái cấu trúc hệ thông tin và bệnh tật là giải thích cho được câu hỏi “làm sao hệ thông tin đáp ứng với một sự thay đổi cường độ kích thích?”. Vì khi các thành phần của hệ thông tin bị tái cấu trúc, khoảng tác dụng (operational range) của nó sẽ bị tác động, gây ra hiện tượng tăng hay giảm nhạy với kích thích rồi dẫn tới tình trạng bệnh lý.

Tái cấu trúc kiểu hình hệ thông tin

Trong suốt quá trình phát triển, quá trình biểu hiện hệ thông tin (signalsome expression) sẽ tạo ra hệ thông tin đặc trưng cho từng loại tế bào, phù hợp với chức năng của nó. Những hệ thông tin đặc hiệu này được duy trì liên tục nhờ quá trình phiên mã, sự ổn định của hệ thông tin (signalsome stability),… tuy nhiên, sự tái cấu trúc có nhiều vai trò như:

–          Tăng lực co bóp cơ tim xảy ra khi gắng sức. Đáp ứng inotropic này có được nhờ vào lộ trình tín hiệu Ca2+ ở tâm thất và quá trình phosphoryl hóa thuận nghịch các phân tử tín hiệu sẽ giúp tế bào cơ tim có thể sinh ra lượng Ca2+ lớn hơn.

–          Hiện tượng synaptic plasticity xảy ra trong trí nhớ tạm thời là kết quả của quá trình phosphoryl hóa phụ thuộc Ca2+ của thụ thể AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) trên tủy tiếp hợp (synaptic spine).

–          Trong quá trình co cơ bám xương, yếu tố nhân (nuclear factor) của tế bào T hoạt hóa (NFAT) duy trì tình trạng của nó và quá trình ức chế này có thể làm biến đổi sợi cơ. Đây là ví dụ của hiện tượng tái cấu trúc, các sợi cơ bám xương trải qua sự thay đổi kiểu hình như là một phản ứng đáp ứng với sự thay đổi các yếu tố tác động vào chức năng của nó.

–          Trong quá trình mang thai, tế bào cơ tử cung trải qua các quá trình thay đổi hệ thống lộ trình tín hiệu của nó để hoạt hóa các phân tử dao động trên màng tế bào (oscillator). Nhờ vậy, nó có thể sinh ra các tín hiệu điện để có thể co thắt mạnh trong suốt quá trình lâm bồn.

Các ví dụ trên đều có một đặc điểm chung là sự thay đổi kiểu hình tín hiệu là một phản ứng bình thường. Bằng cách đó, tế bào có thể thực hiện được chức năng của mình. Tuy nhiên, khi quá trình tái cấu trúc này trở nên bất thường, nó có thể sinh ra các hệ tín hiệu bất thường và do vậy cho ra các tín hiệu không phù hợp, gây ra nhiều tình trạng bệnh lý khác nhau.

Một trong những vấn đề chính hiện nay này là hiện tượng tái cấu trúc thuận nghịch tìm ẩn. Đây là lý do tại sao nhiều công ty Dược nỗ lực nghiên cứu các loại thuốc, nhất là loại khóa thụ thể và bất hoạt protein kinase sao cho chúng phù hợp với các quá trình biến đổi kiểu hình này.

Sau đây chúng ta sẽ tìm hiểu một số rối loạn bệnh lý thường gặp có liên quan đến quá trình này. Ở đây chỉ trình bày một cách hết sức sơ khai với mục đích định hướng cho người đọc tự tìm hiểu trong các sách chuyên khảo cho từng loại bệnh một.

Bệnh hen

 

Hình 44.1: Sinh lý – bệnh của bệnh hen rất phức tạp. Nó gồm có sự tham gia của một số tế bào viêm tương tác lẫn nhau dẫn đến các đáp ứng viêm cấp tính và mãn tính của đường dẫn khí.

Đây là tình trạng bệnh gây ra do sự thay đổi đường dẫn khí bởi các phản ứng viêm, hiện tượng quá nhạy cảm của phế quản, sự tắt nghẽn đường dẫn khí do co thắt quá mức và phì đại các tế bào cơ trơn phế quản. Quá trình co thắt có thể được hoạt hóa do các tác nhân như acetylcholine (Ach), serotonin,…

Khả năng co thắt của các tế bào cơ này có thể tăng lên khi các phân tử dao động trên màng tế bào (oscillator) thay đổi chức năng kiểm soát tình trạng co của chúng. Ngoài ra, sự thay đổi hoạt động của PDE4D hay cơ chế tín hiệu Rho cũng là các nhân tố góp phần vào hiện tượng này vì nó có chức năng kiểm soát sự nhạy cảm của MLCK đối với Ca2+.

Các chất kích thích như (yếu tố tăng trưởng, agonist, cytokines và protein trong dịch ngoại bào,…) có thể kích hoạt sự tăng sinh của tế bào cơ trơn. Ngoài ra, tăng biểu hiện của kênh transient receptor potential 1 (TRPC1) cũng có thể góp phần làm hẹp phế quản và tăng sinh SMC.

Kênh Cl nhạy cảm với Ca2+ 1 (CLCA1) có mặt ở biểu mô phế quản và tế bào đài có hiện tượng quá điều hòa (up-regulated) trong các bệnh nhân bị hen. Do tế bào đài sản xuất chất nhày, nên nó có thể góp phần làm tình trạng hen nặng hơn.

Hình 44.2: Mô tả suy tim sung huyết từ quá trình tái cấu trúc hệ thông tin tế bào tim. Tình trạng phì đại (quá tải), suy giảm tế bào cơ và các yếu tố nội tiết sẽ dẫn đến hiện tượng tái cấu trúc mà đầu tiên hết là sự phì đại bù trừ (compensated hypertrophy) rồi sau đó tiến triển thành tình trạng phì đại không bù trừ trong suy tim sung huyết.

gan

Xơ gan là hậu quả của rất nhiều yếu tố gây hại ở người lạm dụng rượu, bị nhiễm virus viêm gan siêu vi và các chất độc khác. Một trong các biểu hiện ở giai đoạn sớm của xơ gan là hiện tượng sinh tế bào sợi (fibrogenesis) được hoạt hóa ở tác tế bào sao gan (hepatic stellate). Hoạt tính của các tế bào này giảm trong quá trình lão hóa (senescence), làm giảm bớt tác động của nó tới xơ gan.

Lộ trình tín hiệu của các tế bào gan trong xơ gan có liên quan đến hệ thống tín hiệu Smad, TGFβ, MAPK và PI3K/Akt.

Rối loạn hưng trầm cảm

Ở nước Anh có hơn hai người bị bệnh này mỗi năm. Họ thường mất khả năng tương tác với cuộc sống thật và rơi vào trạng thái ảo giác, lơ ngơ (euphoria).

Hiện tượng này đã được mô tả kĩ ở chương trước.

Hình 44.3: Mô tả lý thuyết kiểm soát chứng rối loạn hưng trầm cảm với tác dụng của Li+ và valproate.

Hội chứng Cushing’s

Đây là một bệnh nội tiết gây ra bởi sự tăng tiết quá mức cortisol ở lớp bó (zona fasciculata) tủy thượng thận. Béo phì là triệu chứng thường gặp nhất, bệnh nhân tăng cân nhanh, phân bố mỡ không đồng đều chủ yếu ở mặt làm cho bệnh nhân có bộ mặt “tròn như mặt trăng rằm”, sau gáy có bờm mỡ dưới da trông giống lưng lạc đà, tăng tích mỡ ở ngực, bụng. Ngược lại, chân tay nhỏ, khẳng khiu (mỡ ít tập trung ở vùng này làm cho cơ thể mất cân đối (béo từ mông lên đến mặt, chân tay khẳng khiu). Tuy nhiên có một số trường hợp tăng cân ít hoặc không tăng cân.

Ngoài ra, đái tháo đường, đái tháo nhạt (diabetes insipidus), tiêu chảy, động kinh, rối loạn cương dương, bệnh tim mạch, tăng huyết áp, rối loạn lưỡng cực, béo phì, loãng xương, viêm khớp dạng thấp, hội chứng Zollinger-Ellison’s,… cũng là các rối loạn bệnh lý có liên quan đến hiện tượng này.

Xem bài viết đầy đủ tại đây.

SRESS TẾ BÀO, LỘ TRÌNH VIÊM VÀ SỰ LÃO HÓA TẾ BÀO

SRESS TẾ BÀO, LỘ TRÌNH VIÊM VÀ SỰ LÃO HÓA TẾ BÀO

Bùi Diễm Khuê – Phùng Trung Hùng – Nguyễn Phước Long

Tóm tắt

Hình 45.1: Một số phân tử vô cơ tham gia vào đáp ứng viêm

Tế bào có những lộ trình tín hiệu nội sinh (intrinsic signalling mechanisms) có khả năng nhận biết (sensing) những tình trạng có hại khác nhau, cả bình thường và bệnh lý, và rồi đáp ứng bằng cách sắp đặt (mounting) các đáp ứng đa dạng với stress. Ví dụ, tín hiệu bình thường là các cytokines gây ra đáp ứng viêm ở tế bào. Tín hiệu bệnh lý bao gồm tia UV và tia X, hydrogen peroxide (H2O2), giảm oxy mô đột ngột và gây tổn thương lý hóa do nhiệt hay hóa chất độc hại. Trong nhiều trường hợp, đặc biệt khi tín hiệu stress không quá nghiêm trọng, tế bào có thể sống sót và thậm chí có thể chịu được tổn thương sau đó. Nếu tế bào đang tăng trưởng, những tổn thương dưới ngưỡng gây chết có thể làm cho tế bào ngừng tăng trưởng tạm thời, cho phép đủ thời gian sửa chữa tổn thương, hoặc tiến trình phát triển tế bào có thể bị ngừng lâu hơn và tế bào sẽ đi vào tình trạng lão hóa. Một ví dụ khác của cơ chế sống còn được bảo tồn về mặt tiến hóa là sự tự thực, nó cho phép tế bào ứng phó với nhưng thời kì đói. Tuy nhiên, nếu stress quá nặng nề, tế bào sẽ chết thông qua một quá trình hoại tử nhanh chóng và thảm khốc (catatrosphic), hoặc thông qua một quá trình chậm hơn và có kiểm soát hơn được thực hiện bởi một quá trình mang tính điều hòa cao của sự chết tế bào có chương trình, hay thường được gọi là apoptosis.

Mặc dù đặc điểm hình thái của sự hoại tử và sự chết tế bào có chương trình (apoptosis) có sự khác biệt rõ ràng, nhưng hai quá trình này cũng có một số điểm tương đồng ở chỗ chúng được gây ra bởi các kích thích tương tự nhau, và thường sử dụng cùng các cơ chế tín hiệu. Sự hoại tử xảy ra khi tế bào bị tổn thương áp đảo và nhanh chóng tan rã. Thể tích tế bào tăng lên nhanh chóng, ti thể bị phình lên, và màng bào tương đột ngột gián đoạn làm phóng thích vật chất chứa trong tế bào vào khoảng gian bào, nơi mà nó có thể sinh ra đáp ứng viêm. Ngược lại, sự chết tế bào có chương trình (apoptosis) diễn ra trật tự hơn, trong đó proteases và nucleases trong phạm vi màng bào tương nguyên vẹn tách rời khỏi tế bào bị teo dần về kích thước và sau đó bị các tế bào lân cận nhấn chìm, do đó tránh được bất kỳ phản ứng viêm nào.

Đáp ứng viêm

Hệ miễn dịch bẩm sinh là hàng rào đầu tiên chống lại sự xâm nhập của tác nhân gây bệnh. Nó không chỉ khởi đầu một đáp ứng viêm nhanh và mạnh để tấn công tác nhân gây bệnh ngoại lai mà còn đóng vai trò quan trọng trong việc hoạt hóa đáp ứng miễn dịch thích ứng chậm hơn. Đáp ứng miễn dịch chậm gây ra sự hoạt hóa tế bào B và T đặc hiệu để mở rộng hệ thống chống đỡ của vật chủ. Hàng rào chống đỡ ban đầu trong suốt đáp ứng bẩm sinh được thực hiện bởi một chuỗi phức hợp của tương tác tế bào, gọi chung là đáp ứng viêm. Các tế bào chính tham gia bao gồm tiểu cầu, đại thực bào, dưỡng bào, bạch cầu trung tính và tế bào nội mô. Các đặc tính tiếp theo về đáp ứng viêm sẽ được trình bày và nhấn mạnh vào lộ trình tín hiệu dùng để kiểm soát sự tham gia của những loại tế bào khác nhau này:

  1. Tổn thương mô: Nhiều đáp ứng viêm khởi đầu với tổn thương mô, hiện tượng này hoạt hóa hệ thống bổ thể để phóng thích các yếu tố bổ thể nhằm huy động tế bào viêm (như bạch cầu trung tính chẳng hạn).
  2. Tổn thương tế bào nội mô: Một dạng đặc biệt của tổn thương mô xảy ra khi tế bào nội mô bị phá vỡ. Các tế bào phóng thích hóa chất trung gian gây viêm như thrombin và bradykinin chính là nguyên nhân gây ra đỏ, đau và sưng do mạch máu tại chỗ bị giãn và tăng tính thấm với dịch và protein máu. Trong các protein này, một số là yếu tố bổ thể và kháng thể IgG bao bọc tác nhân gây bệnh, dẫn đến sự thực bào. Tế bào nội mô cũng phóng thích sphingosine 1-phosphate (S1P), chất này cũng có thể ảnh hưởng tính thấm thành mạch.
  3. Sự kết tập tiểu cầu và tạo thành huyết khối. Thrombin gây ra bởi tổn thương tế bào nội mô có vai trò chính trong các quá trình này. Đối với sự tạo huyết khối, thrombin có vai trò chuyển fibrinogen thành  fibrin, đồng thời khởi đầu các đợt phản ứng gây ra sự tương tác chéo các đơn phân (monomers) tạo thành các lưới xơ ngăn cản dòng máu. Thrombin góp phần vào sự hoạt hóa tín hiệu Ca2+ giúp kiểm soát nhiều phần trong quá trình kết tập tiểu cầu.
  4. Tính thấm nội mô: Tế bào nội mô kiểm soát dòng chất và tế bào từ huyết tương vào khoảng gian bào. Bình thường, dòng chảy này bị hạn chế hoàn toàn. Tuy nhiên, khi viêm, nhiều hóa chất trung gian như thrombin, bradykinin và histamine cao có thể tăng tính thấm mạnh mẽ bằng cách co rút tế bào để mở đường cận tế bào.
  5. Sự tăng sinh tế bào: Trong suốt quá trình lành vết thương, có một lượng lớn tế bào tăng sinh để cung cấp tế bào mới cho sự tái cấu trúc mô. Một số quá trình tăng sinh được điều khiển bởi yếu tố tăng trưởng có nguồn gốc từ tiểu cầu (PDGF) và yếu tố tăng trưởng biến hình β (TGF-β). Sự tăng sinh tế bào xảy ra nhiều ở nguyên bào sợi và những tế bào trung mô khác. Sự tăng sinh tế bào nội mô cũng có thể gia tăng như một phần của quá trình tân tạo mạch để sửa chữa những mạch máu bị hư hại. Sự phóng thích yếu tố tăng trưởng nội mô mạch máu (VEGF) đóng vai trò quan trọng trong việc kích hoạt sự gia tăng này trong sự tăng sinh của tế bào nội mô. Cả tiểu cầu và tế bào nội mô phóng thích sphingosine 1-phosphate, một trong những phân tử tín hiệu loại lipid được tạo bởi lộ trình tín hiệu sphingomyelin.
  6. Hoạt hóa đại thực bào. Đại thực bào tồn tại hàng tháng thậm chí nhiều năm, bố trí trong nhiều cơ quan, nơi chúng hoạt động như “lính canh” thường trực để sẵn sàng khởi đầu một phản ứng viêm thông qua hai cơ chế chính. Thứ nhất, chúng có thể phản ứng với các tín hiệu từ tác nhân gây bệnh bằng cách phóng thích một lượng lớn hóa chất trung gian gây viêm như chemokines. Ngoài ra, có khả năng là đại thực bào có các thụ thể có thể phát hiện acid uric tạo ra từ chuyển hóa acid nucleic ở các tế bào chết. Thứ hai, chúng loại bỏ tác nhân gây bệnh bằng cách bao lấy các tác nhân này trong quá trình thực bào.

Tác nhân gây bệnh khởi đầu sự hoạt hóa đại thực bào bằng cách phóng thích PAMPs. Các phân tử PAMPs này hoạt động thông qua nhiều thụ thể Toll-like (TCRs) để kích thích lộ trình tín hiệu của yếu tố nhân κB (NF-κB). Đối với đại thực bào, PAMPs giúp điều hòa hoạt động phiên mã của nhiều thành phần góp phần vào phản ứng viêm, như yếu tố hoại tử u α (TNFα), interleukin 1 (IL-1) và IL-6. PAMPs có tác dụng tương tự ở dưỡng bào. Các tác nhân gây bệnh bị bao bọc bởi kháng thể (IgG và IgM) hoạt hóa hệ thống bổ thể để phóng thích các yếu tố bổ thể như C3a và C5a, đó là những yếu tố hoạt động như phân tử hóa hướng động (chemoattractants) cho tế bào viêm như bạch cầu đa nhân trung tính (neutrophils) là một ví dụ. Ngoài ra, các tác nhân gây bệnh bị bao bọc được “đánh dấu” cho quá trình thực bào bởi đại thực bào.

Hình 45.2: Tóm tắt đáp ứng viêm với tổn thương mô và tác nhân gây bệnh. Hệ thống miễn dịch bẩm sinh được kích hoạt bởi các tín hiệu phát sinh từ mô tổn thương và các tác nhân gây bệnh để hoạt hóa các tế bào như đại thực bào, bạch cầu trung tính, dưỡng bào, tiểu cầu và tế bào nội mô, góp phần vào chuỗi phối hợp các phản ứng để loại bỏ tác nhân gây bệnh cũng như sửa chữa mô tổn thương. Các tế bào nội mô được mô tả ở ba trạng thái: dạng phẳng bình thường (màu xanh), co lại để tăng tính thấm nội mô (vàng nhạt) và tế bào bị tổn thương (vàng đậm), nơi sự kết tập tiểu cầu xảy ra trong quá trình tạo thành nút chặn huyết khối. Chi tiết của các phản ứng này được mô tả trong bài đọc.

  1. Hoạt hóa dưỡng bào. Các dưỡng bào định cư tại chỗ đóng vai trò quan trọng trong việc khởi đầu đáp ứng viêm. Các kháng nguyên liên kết chéo với IgE bao quanh FcεRIs để kích hoạt nhiều cơ chế tín hiệu dưỡng bào phóng thích histamine và các hóa chất trung gian gây viêm khác.
  2. Sự chiêu mộ và hoạt hóa bạch cầu đa nhân trung tính (neutrophil). Neutrophil có thời gian bán hủy tương đối ngắn, tuần hoàn trong máu vài giờ trước khi di chuyển vào mô liên kết xung quanh, đặc biệt ở vị trí viêm, và chỉ hoạt động vài ngày ở đó. Neutrophil dùng hai lộ trình chính để xuyên qua lớp nội mô của tế bào. Quan điểm thường được chấp nhận là neutrophil ép lại để đi qua khe tế bào. Một cơ chế khác, neutrophil sử dụng podosome để tạo ra năng lượng giúp nó đi xuyên qua khe tế bào. Sau đó, một quá trình hóa hướng động bạch cầu đa nhân trung tính thu hút những bạch cầu này đến vị trí viêm; trong suốt quá trình đó, các tế bào theo gradient của các chemokines, các yếu tố bổ thể (C3a và  C5a) và fMet-Leu-Phe (fMLP). fMLP, một sản phẩm thoái biến (breakdown) của vi khuẩn, là một phân tử hóa hướng động kinh điển.
  3. Sự biệt hóa bạch cầu đơn nhân (monocyte). Bạch cầu đơn nhân theo một lộ trình tương tự bạch cầu đa nhân trung tính. Chúng thâm nhập qua lớp nội mô để vào khoảng gian bào, nơi chúng biệt hóa thành đại thực bào.
    Đáp ứng viêm được điều hòa ở mức cao và phụ thuộc vào cơ chế tiền viêm (pro-inflamatory) xảy ra sớm (như mô tả ở trên), nhưng bị trung hòa từ từ bởi nhiều lộ trình kháng viêm trung gian bởi các yếu tố như cytokines [interleukin-10 (IL-10)], hormone và các chất dẫn truyền thần kinh [acetylcholine, peptid ruột vận mạch (vasoactive intestinal  peptide – VIP) và polypeptid hoạt hóa adenyl cyclase tuyến yên (pituitary adenylate  cyclase- activating polypeptide – PACAP)]
    Mặc dù diễn biến của một đáp ứng viêm là có lợi, nhưng có những trường hợp mà đáp ứng này ngoài tầm kiểm soát và bắt đầu gây hại, do sản phẩm cytokine viêm dư thừa như TNFα, IL-1β và IL-6 gây ra phù và tổn thương mô. Thật vậy, viêm cấp và mạn liên quan đến nhiều bệnh, như nhiễm trùng huyết, viêm khớp dạng thấp, viêm ruột (bao gồm bệnh Crohn và viêm loét đại tràng), hội chứng suy hô hấp (respiratory distress syndrome), viêm phúc mạc và viêm tim (carditis). Đối với não, nhiều bệnh thoái hóa thần kinh có thể do hoạt hóa thụ thể TLR 4 ở vi tế bào đệm (microglia cell) gây ra đáp ứng viêm.

Các cytokine viêm

Có nhiều cytokine và các tác nhân liên quan gây ra viêm. Hai trong số các cytokine chính là yếu tố hoại tử u-α (TNFα) và interleukin-1 (IL-1).

Yếu tố hoại tử u (TNF)

TNF có hai dạng chính được nói tới ở đây: TNFα (được biết như cachetin vì nó điều hòa sốt và chứng suy mòn – cachexia) và TNF-β (lymphotoxin). Trong hầu hết các mục đích, chúng được xem xét cùng với nhau. TNF là cytokine tiền viêm mạnh chịu trách nhiệm cho nhiều hiệu ứng có hại như nhiễm trùng do vi khuẩn, viêm khớp dạng thấp và bệnh Crohn. TNF hoạt động trên thụ thể TNF (TNF-R) để chiêu mộ những lộ trình tín hiệu khác nhau:

●     TNFα hoạt hóa lộ trình tín hiệu của yếu tố nhân κB  (NF-κB).

●     TNF-R có thể hoạt hóa caspase 8 để khởi đầu lộ trình bên ngoài của sự chết có chương trình (apoptosis).

●     TNFα hoạt hóa lộ trình tín hiệu sphingomyelin.

●     TNFα được phóng thích từ tế bào hình sao (folliculo stellate – FS) để đáp ứng với lipopolysaccharide (LPS)

Thụ thể TNFα bị bất hoạt thông qua quá trình phát tán ngoại bì (ectoderm shedding). Đột biến ở vị trí phân tách của thụ thể TNF ngăn cản điều hòa ngược bởi enzyme ADAM chịu trách nhiệm cho sự phát tán của nó, là nguyên nhân của hội chứng sốt có chu kỳ liên quan với thụ thể TNF (TNF-receptor-associated periodic febrile syndrome – TRAPS).

Xem toàn bộ bài viết tại đây.

Nhược giáp – Hypothyroidism

GIẢI THÍCH CĂN BẢN SINH LÝ BỆNH HỌC NỘI TIẾT

Nhược giáp – Hypothyroidism

Phùng Trung Hùng – Nguyễn Phước Long

Tình trạng thiếu iodine là nguyên nhân hàng đầu gây ra tình trạng nhược giáp trên toàn thế giới. Bên cạnh đó, bệnh lý tự miễn (như viêm giáp Hashimoto’s) và nguyên nhân đến từ trị liệu (iatrogenic cause) là 2 nguyên nhân phổ biến nhất.

Bảng 1: Các nguyên nhân gây ra nhược giáp

Xét một trường hợp phụ nữ 48 tuổi. Có:

Triệu chứng cơ năng

–          Fatigue – mệt mỏi, cảm giác kiệt sức.

–          Weakness – suy nhược.

–          Weight gain – tăng cân.

–          Muscle cramping – vọt bẻ (chuột rút).

–          Always feel cold – luôn cảm thấy lạnh, nhạy cảm với môi trường lạnh.

–          Constipation and headache during the past 2 months – Táo bón và đau đầu tiếp diễn suốt 2 tháng nay.

Triệu chứng thực thể

–          T = 36oC, P = 50, R = 16, BMI = 32.

–          Overweight postmenopausal female – Phụ nữ mãn kinh béo phì.

–          Skin is pale, dry and thin – Da tái nhợt, khô và mỏng.

–          Hair is brittle – Tóc dễ gãy.

Cận lâm sàng

–          RBC = 3.9 Mcell/µL (normal: 4.2 – 5.4)

–          Serum TSH 6.4 mIU/mL (normal: 0.4 – 6.0)

–          Thyroxine (T43.9 µg/dL (normal 4.5 – 11.2)

–          Triiodothydronine (T380 ng/dL (normal 95 – 190)

–          TSH receptor antibody: Negative.

–          Thyroid antibodies: Positive.

Chẩn đoán xác định

Hypothyroidism caused by Hashimoto’s thyroiditis

(Nhược giáp do viêm giáp Hashimoto’s)

Bảng 2: Triệu chứng cơ năng và triệu chứng thực thể của nhược giáp theo thứ tự giảm dần sự phổ biến.

Sinh lý bệnh các triệu chứng chính

Sinh lý tuyến giáp

Hormone tuyến giáp có bản chất là amino acid nhưng thụ thể của nó nằm bên trong nhân tế bào. Sinh lý quá trình sản xuất hormone tuyến giáp được mô tả qua hình sau:

Hình 1: Tuyến giáp có rất nhiều nang chứa chất keo bao xung quanh các tế bào nang tuyến. Các tế bào nang tuyến hấp thu iodide thông qua NIS (sodium-iodide co-transporter) và sau đó dự trữ nó ở chất keo (qua pendrin, tên đầy đủ là sodium-independent chloride/iodide transporter). Tế bào nang tuyến còn tổng hợp thyroglobulin và các enzyme khác cần thiết cho quá trình gắn iodide vào tyrosine. Cần nhớ rằng tyrosine gắn kết với thyroglobulin và sau đó iodinate hóa ở trong chất keo chứ không phải trong tế bào. Mỗi tyrosine sẽ gắn 1 hoặc 2 iodide rồi dimer hóa để tạo thành T3 hay T4 một cách ngẫu nhiên rồi được ẩm bảo trở lại vào trong tế bào, sau đó được tiết vào máu.

Các chức năng của hormone tuyến giáp, cần lưu ý dạng hoạt động của hormone tuyến giáp là T(xúc tác với 5’-deiodinase type 2):

–          Cần thiết cho sự trưởng thành của tế bào não trong giai đoạn bào thai.

–          Cần thiết cho sự biệt hóa – phát triển của tế bào cũng như sự tăng trưởng của cơ thể.

–          Cần thiết cho sự tăng trưởng mô (cơ vân, tim, gan,…) và xương. Quá trình này bao gồm khả năng khởi động các quá trình tổng hợp nhiều protein cấu trúc và enzyme của tế bào. Lưu ý là vai trò của hormone tuyến giáp đối với sự tăng trưởng của xương được thực hiện trung gian qua việc tổng hợp GH/IGF-1.

–          Là thành phần quyết định mức chuyển hóa cơ bản của cơ thể. Thực hiện quá trình phosphoryl hóa oxy hóa, tiêu thụ oxygen,… để cân bằng tỉ lệ ATP/ADP cần thiết cho các hoạt động bình thường của cơ thể. Do vậy tình trạng nhược giáp gây nên một sự thiếu năng lượng toàn thể, khiến người bệnh rơi vào trạng thái mệt mỏi, suy nhược, không muốn vận động.

–          Sinh nhiệt. Trong tế bào mỡ, T3 hoạt hóa phiên mã tạo UCP1 (uncoupling protein 1). Protein này làm thất thoát H+ trong màng trong ti thể, khiến năng lượng phần lớn chuyển thành nhiệt năng thay vì đưa về dạng sử dụng chủ động ATP.

–          Điều hòa sự chuyển hóa carbohydrate, mỡ và protein.

–          Thực hiện vai trò tác hồi âm đến sự sản xuất TRH và TSH.

–    Da khô, tái nhợt, mỏng. Thiếu hormone tuyến giáp làm giảm tổng hợp protein và lipid, do vậy các thành phần của da bị giảm sút, gây ra biểu hiện trên. Xem thêm tại đây.

Hình 2: Sự chế tiết TSH bởi TRH phụ thuộc vào sự hoạt hóa PLC để tạo InsP3. Sau đó, InsP3 sẽ hoạt hóa phóng thích Ca2+ ở ER nhằm kích hoạt quá trình xuất bào của các túi tiết có chứa TSH. Ngoài ra, Ca2+ còn có thể bật đèn xanh cho sự biểu hiện của β-TSH gene. Cuối cùng, TSH chịu sự ức chế của T3 (khi phân tử này gắn vào thụ thể của nó ở nhân tế bào, nó sẽ ức chế quá trình phiên mã của gene mã hóa TSH).

 

Chức năng cụ thể được tóm lại trong bảng sau đây, cần đọc thêm các tài liệu về sinh học phân tử tế bào để nắm rõ cơ chế:

Bảng 3: Chức năng hormone tuyến giáp

Sinh lý bệnh

–          Chẩn đoán nguyên nhân nhược giáp là do viêm giáp Hashimoto’s dựa trên cơ sở là sự hiện diện của kháng thể kháng tuyến giáp.

Viêm giáp hay bệnh Hashimoto’s là một đáp ứng tự miễn trực tiếp chống lại mô tuyến giáp. Sự phá hủy cấu trúc nang làm giải phóng T3 và T4 từ chất keo có thể gây ra tình trạng cường giáp thoáng qua (hashitoxicosis). Tuy nhiên, sự phá hủy này sẽ khiến các vùng đó không còn khả năng tổng hợp hormone tuyến giáp nữa. Do vậy, nồng độ hormone tuyến giáp giảm xuống gây ra các biểu hiện nhược giáp như ta đã thấy.

–          Cần biết rằng tình trạng nhược giáp này sẽ làm tăng sản xuất TRH và TSH (do không còn đủ thành phần ức chế là T3 và T4 nữa). Nồng độ TSH tăng chính là nguyên nhân gây phì đại tuyến giáp trong trường hợp bướu cổ ở giai đoạn trễ.

–          Tăng cân trong nhược giáp là do giảm các quá trình chuyển hóa của cơ thể.

–          Như đã trình bày, T3 tạo UCP1 làm giải phóng năng lượng dưới dạng nhiệt, khi không còn đủ T3 nữa, quá trình sinh nhiệt của cơ thể bị gián đoạn và làm hạ thân nhiệt.

–          Nhịp tim chậm. Sự điều hòa nhịp tim của hormone tuyến giáp không phải là một vấn đề đơn giản, ở đây ta đề cập đến khía cạnh bản thân tế bào cơ tim, ngoài ra các bạn cần tìm hiểu thêm ảnh hưởng của hormone tuyến giáp đối với sự kiểm soát của hệ thần kinh nữa (sẽ được nói đến ở một phần khác). Hormone tuyến giáp, với khả năng kiểm soát sự tổng hợp protein, nó đóng vai trò duy trì trạng thái năng lượng cho các tế bào cơ nói chung và cơ tim nói riêng. Hormone này điều hòa biểu hiện của myosin, Ca-ATPase, kênh Na-K và hoạt động của một số enzyme khác trong sự phân giải đường cũng như chuyển hóa của ti thể để đảm bảo cả về mặt năng lượng lẫn điện thế và cơ chế gây co cơ. Khi tình trạng nhược giáp diễn ra, nó khiến cho chuyển hóa của cơ tim bị đình trệ, thiếu hụt các thành phần cần thiết cho quá trình co cơ, dẫn đến giảm hoạt động của cơ tim, biểu hiện trên lâm sàng là nhịp tim chậm. Tham khảo thêm  tại đây

Hình 3: Quan hệ giữa hệ thần kinh và các cơ quan tác động của hệ tiêu hóa.

–          Tình trạng táo bón xảy ra do rối loạn nhu động ruột. Nhu động ruột giảm vừa do giảm hoạt chức năng của cơ trơn ruột và không kém phần quan trọng là sự chi phối của hệ thống thần kinh.

Để tóm lại, chúng ta cùng xem hình ảnh minh họa sự khác nhau giữa nhược giáp và cường giáp:

APOPTOSIS – SỰ CHẾT CỦA TẾ BÀO

APOPTOSIS – SỰ CHẾT CỦA TẾ BÀO

Phùng Trung Hùng – Phạm Thiên Tánh – Nguyễn Phước Long

 

Tóm tắt

Sự tăng sinh và chết tế bào là hai mặt của một vấn đề giúp đảm bảo cân bằng nội môi tế bào. Những mạng lưới điều hoà điều khiển đời sống và quyết định cái chết trên cấp độ tế bào thì phức tạp hơn nhiều so với chúng ta từng nghĩ. Quá trình này diễn ra bình thường là nhờ vào sự diều hòa một các nghiêm ngặt của cơ thể nhưng khi gặp một số tác nhân tạo nên sự mất cân bằng (như bệnh, thoái hóa neuron,biến đổi tạo hình), quá trình này sẽ thay đổi. Apoptosis có ở tất cả các động vật đa bào. Điều quan trọng ở đây là các tế bào nào sẽ tham gia vào quá trình chết tế bào apoptosis và cách các tế bào này vào apoptosis.

Hai con đường chính dẫn đến quá trình apoptosis: các thụ thể chết (lộ trình bên ngoài) vàlộ trình ty thể (lộ trình bên trong). Lộ trình ty thể là một quá trình nhanh chóng và mạnh mẽ. Sự phá huỷ ty thể làm phóng thích các yếu tố tiền apoptosis như cytochrome c. Còn nhiều lý do làm cho quá trình nghiên cứu gặp khó khăn, một trong số đó là cho đến nay người ta vẫn chưa chắc chắn về mối quan hệ của hai lớp màng của ti thể và mối quan hệ của các lỗ lớn tham gia. Gần đây, nghiên cứu trênsự tái cấu trúc mào ty thể đã cho ta biết về một “trạm kiểm soát” các tế bào đi vào apoptosis, qua đó xác định độ nhạy của con vật trưởng thành với apoptosis.

 

Giới thiệu: Sự sống và cái chết

 

Sự sống và cái chết đi chung với nhau như 2 mặt của cùng một đồng xu. Sinh học tế bào và sinh hoá đã củng cố cho luận điểm này, cho chúng ta thấy rằng đã có sự sống ăt hẳng sẽ phải có cái chết và ngược lại. Các tế bào có thể chết vì già, vì khiếm khuyết, vì thừa so vơi nhu cầu của mô hay vì chúng gây ra vài hư hại. Điều chắc chắn là tất cả tế bào thật sự được lập trình để chết. Nhưng các tế bào sống được là nhờ một loạt những tín hiệu ngăn cản chúng thực hiện các chương trình chết của mình. Kết quả là, các tế bào sống sót, tăng sinh, biệt hoá, và thực hiện những chức năng của chúng. Các tín hiệu ngăn cản chương trình chết này có thể là các tín hiệu nội bào hay ngoại bào. Khi các tín hiệu này không được phát ra hay có một tín hiệu khác mạnh hơn nó được hoạt hóa, tế bào sẽ đi vào chu trình chết của chúng. Trong trường hợp này, sự sống là bất cứ điều gì mà không có cái chết.

Điều này dẫn đến việc tế bào sinh ra rồi lại chết đi và có chết đi mới có tế bào tiếp tục được sinh trưởng và phát triển, cứ tiếp tục như thế cho đến hết cuộc đời hay nói khác hơn chết có chu trình đóng một vai trò chủ chốt trong việc phát triển và tăng trưởng của những sinh vật phức tạp. Một lượng lớn các tế bào chết trong quá trình phát triển của phôi, ví dụ trong giai đoạn tạo tác hình thành các cơ quan. Trong cuộc đời của các sinh vật trưởng thành, các tế bào chết đi với một số lượng lớn đối trọng với sự phân chia tế bào để (1) cung cấp cho cơ thể những tế bào cần cho những giai đoạn khác nhau, (2) để diệt những tế bào già, hư hại hoặc gây hại trong tổng số tế bào hằng định nội môi. Sự mất cân bằng giữa sự phân chia tế bào và sự chết tế bào dẫn đến những bất thường về phát triển, những bệnh thoái hoá hay những biến đổi tân sinh.

Những cách thức tế bào chết đi

Sự hoại tử

Tác nhân gây bệnh là chấn thương nghiêm trọng như: bỏng, đứt hay đènén, có thể gây chết tế bào hoại tử.Trong cái chết hoại tử này, tình trạng stress quá mức gây nên tình trạng sinh hóa không tương thích với sự tồn tại bình thường của tế bào. Trong trường hợp này, những khối các tế bào trong mô bị sưng phù và sau khi nghiên cứu người ta nhận thấy rằng các khối tế bào bào này không còn tồn tại hoạt động chuyển hóa. DNA nhân ngưng tụ, tập trung nhiều nhất ở rìa nhân và các thành phần tế bào bắt đầu phân hủynhanh chóng và không kiểm soát được. Những chất quan trọng nội bào nhanh chóngrò rỉ ra khỏi tế bào, kích hoạt tình trạng viêm nhờ tế bào của hệ miễn dịchbẩm sinh.Những bằng chứng gần đây cho thấy rằng đáp ứng viêm được khởi phát bằng cách phóng thích một phổ đầy đủ của các phân tử được gọi chunglà alarmins, mà cụ thể danh tínhvẫn còn chưa được xác định chính xác. Đặc điểm chung của chúng là khả năng hoạt hóa các thụ thể nhận dạng đại thực bào, tế bào đuôi gai và các tế bào diệt tự nhiên. Qua đo các alarmins này sẽ giúp các tế bào của hệ miễn dịch kích hoạt được tế bào T và bắt đầu đáp ứng miễn dịch, để ngăn chặn nhiễm trùng và loại bỏ tế bào ở các mô đang bị viêm.Tại thời điểm này, các mảnh vỡ tế bào bị nhấn chìm và được loại bỏ bởi các đại thực bào.

Hình 46.1: Sự khác biệt giữa hoại tử và apoptosis. Nét cơ bản là sự phá hủy màng bào tương phóng thích tất cả thành phần của tế bào ở hoại tử, điều này có thể khởi phát tiến trình viêm lan rộng. Trong apoptosis, màng bào tương nguyên vẹn của các thể apoptotic hầu như sẽ bị thực bào êm đềm không khởi phát tiến trình viêm.

Apoptosis

 

Quá trình thứ hai của cái chết được đặt ra là apoptosis (trong tiếng Hy Lạp có nghĩa là sự rụng lácây cối). Năm 1972, một kiểuchết tế bào mới được định nghĩa đã được xác định bởi Kerr, Wyllie, và Currie.Ban đầu kiểu chết này được xem như không thoái hóa trong tự nhiên nhưng sau đó một bài nghiên cứu ấn tượngsau đó đã chứng minh điều ngược lại. Apoptosis là khôngchỉ là một quá trình hoạt động theo thứ tự, mà nó còn là một quá trình yên lặng bằng cách tháo dỡ các tế bào nhưng không lan truyền bừa bãiđến các tế bào xung quanh. Ở cấp độ tế bào, quá trình này đặc trưng bởi một sự khởi phát làm thủng các tế bào và sau đóphá vỡ những mối liên hệ tế bào-tế bào. Các tế bào co tròn lại và màng nội bào và các bào quan cô đặc lại nhiều hơn trong tế bào chất, sau đó chúng sẽ tối hơn.

Hình 46.2: tiến trình Apoptosis.

Đáng chú ý là ở thời kì muộn của quá trình, các bào quan vẫn còn nguyên vẹn và bình thường,cho thấy hoạt động chuyển hóa vẫn còn quan trọng đối với tế bào trong thời gian đầu. Các thành phần tế bào chất không bị rò rỉ khỏi tế bào, vì vậy, đáp ứngviêmkhông được tạo ra. Trong nhân, chất nhiễm sắc cô đặc tối đa và thườngtạo ra các phần hình lưỡi liềm bao quanh màng nhân hoặc pycnosis. Sự kiện rất đặc biệt nàykhông nhìn thấy trong bất kỳ trường hợp nào khác.Endonucleasestách một cách chính xác DNA giữa các nucleosome, cho ra những mảnh vỡ của 180 (hay nhiều hơn) đôi base. Mặc dù ít được chú ý hơn, những mạng lưới nội bào khác như Golgi, lưới nội chất và ty thể cũng bịphân mảnh đáng kể. Trong khi quá trìnhphân cắt DNA tiếp tục, nhân bắt đầu vỡ thành từng mảnh vàtế bào tương tự cũng chia tách thành một số mảnh nhỏ còn nguyên vẹn hoặc các thể apoptosis không bắt màu thuốc nhuộm. Sau đó xảy rasự thực bào, một quá trình trong đó các đại thực bào di cư hay các tế bào biểu mô khoẻ mạnh xung quanh nuốt các mảnh vỡ của tế bào. Sự kiện này đặc biệt đáng chú ý là ở trạng thái bình thường các thực bào nàytham gia trong việc nhận và loại bỏ vật lạ hoặc các thực thể “không phải của bản thân”. Kết quả là, các thể apoptosis gắn vào một túi được bao bọcbởi màng trong một tế bào gọi là thể thực bào. Cuối cùng, tế bào chủhay thể thực bào và chất chứa của nó dần dần bị suy thoái, và trong nhiều trường hợp, một tế bào mới thay thế tế bào cũ trong một vài giờ. Trong một số hệ thống tế bào,đặc biệt là trong nuôi cấy tế bào (in vitro), apoptosis không xảy ra với đầy đủ các bước và theo đúng trình tự thời gian như ở trên.Lưu ý, sự cô đặc nhiễm sắc chất thành quả bóng đặc hình cầu tại một đầu của nhân không phải là bất thường. Trái lại, khi nuôi cấy trong ống nghiệm (in vitro), các tế bào trải qua quá trình apoptosis bị mất một phần màng plasma. Trong trường hợp không có đại thực bào, các tín hiệu apoptosis có vai trò thúc đẩysự tự loại bỏ nhanh chóng bởi sự vắng mặt các đại thực bào nhận diện sự bất thường (ví dụ như sự ngoại bào hoá phosphatidylserine từ lớp trong ra lớp ngoài trên màng bào tương của chúng) không thể xảy ra. In vivo, sự nhận diện này loại bỏ hiện tương viêm và khở động phản ứng đông máu.

Hình 46.3: Scramblase hoán vị phosphatidyl serine từ lớp lipid trong ra lớp lipid ngoài, macrophage có thể nhận diện sự bất thường này, ngoài ra PS còn có thể tương tác với Annexin V (AV) và là vị trí gắn kết với phức hợp prothrombinase factor Xa,Va &II(ngăn chận tiến trình đông máu in vivo).

Đọc toàn bộ bài viết tại đây.

KHÁI LƯỢC VỀ EPIGENETICS

KHÁI LƯỢC VỀ EPIGENETICS

Phùng Trung Hùng – Nguyễn Phước Long

Epigenetics là một khái niệm đã được đề xuất từ thập kỉ 40 của thế kỉ XX bởi C.H. Waddington nhằm khảo sát hiện tượng biến đổi biểu hiện gene mà không do tác động của sự thay đổi hóa học của chuỗi DNA trong bộ gene. Thuật ngữ epigenetics bao gồm epi- (επί – ở trên hay ở ngoài) với genetics cho thấy toàn thể tiến trình diễn ra ở ngoài chuỗi DNA và dĩ nhiên không có sự biến đổi nào trong DNA của bộ gene. Từ thế kỉ XIX, người ta đã nhận thấy sự dồi dào thực phẩm trong một mùa bội thu có thể gây sự béo phì cho thế hệ sau mặc dù ở thế hệ sau không có những mùa bội thu tương tự. Hiện tượng này sau đó được biết là do thực phẩm, nhất là các nhóm methyl, SH-, acetyl trong thực phẩm đã gây ra sự biến đổi trong việc biểu hiện các gene có thể gây béo phì. Sự biến đổi trong thế hệ này do các yếu tố ngoại lai gây ra trên sự biểu hiện gene, có thể truyền sang những thế hệ sau. Vấn đề hiện nay thế giới phải đối mặt về vấn nạn béo phì không phải là do dinh dưỡng thừa ở thế hệ hiện tại mà do sự tích lũy các biến đổi biểu hiện gene về mặt epigenetic được di truyền từ những thế hệ trước

Những sự biến đổi biểu hiện gene này đã được biết hiện hữu từ tế bào mầm (germ cell) đến phôi và sinh vật trưởng thành. Như vậy, bản thân của hiện tượng epigenetic là một sự điều biến phenotype. Hậu quả của những sự điều biến này có thể đi từ sự phát triển bình thường của phôi đến sự phát triển ung thư ở sinh vật trưởng thành. Tuy sự điều biến phenotype vô cùng đa dạng những thay đổi phân tử của hiện tượng này lại tương đối khá đơn giản theo những gì người ta biết cho đến nay.

Một thí nghiệm đơn giản đã cho thấy hiện tượng này liên quan đến mội trường sống của sinh vật và là hậu quả của sự điều biến epigenetic: chuột con nếu được nuôi dưỡng từ chuột mẹ với dinh dưỡng và môi trường tốt sẽ trưởng thành như một sinh vật thoải mái và ngược lại.

Hình 48.1: Chuột con trong điều kiện thiếu dinh dưỡng khi trưởng thành dễ bị âu lo (anxiety)

Hình 48.2: Chỉ cần đưa thuốc có thể cung cấp nhóm methyl gắn vào cặp base C-G đã có thể biến đổi chuột từ trạng thái thoải mái thành trạng thái âu lo.

Hình 48.3: Toàn thể tiến trình stress là một chuỗi biểu hiện gene nhằm đáp ứng với tình trạng này do phản ứng của trục hypothalamus-pituitary-adrenal. Chuỗi biểu hiện gene này tạo ra corticotrophin releasing hormone (CRH) ở hypothalamus, adreno-corticotropic hormone (ACTH) ở tuyến yên và cortisol ở tuyến thượng thận, toàn thể hay một phần của các quá trình biểu hiện gene có thể bị biến đổi mãi mãi (remodeling) nếu tình trạng stress kéo dài nhưng có thể chỉ là một phản ứng tạm thời để tạo ra kiểu hình thích ứng (adaptive phenotype).

Từ các ví dụ trên, epigenetics được định nghĩa là nghành học nghiên cứu những biến đổi biểu hiện gene có thể di truyền xảy ra mà không có sự thay đổi nào trong chuỗi DNA của bộ gene. Tuy nhiên, những thay đổi gần đây trong việc sử dụng thuật ngữ đã gợi ý cần phải bỏ bớt tính chất di truyền và như vậy các biến cố epigenetic nên được định nghĩa lại là“ sự thích ứng cấu trúc của nhiều vùng trênNST để xác định, khởi động tín hiệu hay biến đổi hoạt động mãi mãi ”.

Hình 48.4: Minh họa sự gắn kết của nhóm methyl vào chuỗi DNA ở vị trí CpG.

Sự biến đổi biểu hiện gene về mặt epigenetic khởi nguồn từ sự thay đổi khả năng tiếp cận đến các genes đặc biệt của bộ máy chuyển mã (transcription machinery) ở loài eukaryote, hầu hết là thay đổi cấu trúc nhiễm sắc chất hay RNA interference (RNAi). Các thành phần chính trong quá trình điều tiết sự chuyển mã là DNA methylation, biến đổi histone và các biến tướng, proteins nhiễm sắc chất không phải là histone, small interfering RNA (siRNA) và micro RNA (miRNA). DNA methylation là một quá trình chuyển nhóm methyl  từ S-adenosylmethionine  đến đầu 5´ của vòng cytidine. Ở loài có vú, cytidines gắn kết với guanosine trên chuỗi tương thích và có những đoạn trên cùng một mạch có trình tự C-G.Do vậy, thuật ngữ CpGs để chỉ vị trí methyl hóa ở trình tự C-G trên 2 cùng mạch DNA, cần phân biệt với việc gắn kết C-G trên chuỗi DNA tương hợp và trường hợp trên chuỗi cùng mạch khác như CpG oligodeoxynucleotide ( p là phosphodiester). Cytosines gắn kết với base khác ngoài guanine (như CpA) cũng có thể bị methyl hóa. CpGs hiện diện rất nhiều trong một đoạn DNA ngắn được gọi là đảo CpG, được phát hiện gần 40% trong các promoters của động vật có vú.

Methyl hóa DNA được thiết lập và duy trì bởi các enzymes thuộc họ DNA methyltransferase (DNMT). Hệ quả của methyl hóa DNA trên sự biểu hiện gene là gây nên một sự hỗn độn làm giảm sự biểu hiện gene, vì vậy được gọi là làm câm nín gene (gene  silencing). Hiện tượng câm nín này có thể do phát động tiến trình giảm ái lực hay hủy bỏ hoàn toàn khả năng gắn kết của các yếu tố chuyển mã (transcription  factor) vào vùng DNA bị methyl hóa hoặc tương tác trực tiếp với DNMTs, histone deacetylases, methyltransferases hay các đồng ức chế chuyển mã khác.

Hình 48.5: Cơ chế kháng viêm của corticosteroids trong hen phế quản.(1) Các gene gây viêm được hoạt hóa bởi các yếu tố gây viêm (IL-1β, TNF-α,…), hoạt hóa IKKβ (inhibitor of I-kappaB kinase-β), sau đó phân tử này sẽ hoạt hóa yếu tố phiên mã nhân NF-kappaB. Bộ dimer p50 và p65 của protein di chuyển vào trong nhân và gắn vào vị trí nhận diện và cũng là vùng đồng hoạt hóa kappaB (Như CREB, có hoạt tính HAT nội sinh). Kết quả của quá trình này là sự acetyl hóa histone và do vậy tăng biểu hiện của gene mã hóa cho nhiều protein đáp ứng viêm. (2) Các thụ thể của glucocorticoid gắn vào corticosteroids, phức hợp này vào nhân và bất hoạt hoạt tính của HAT bằng hai cách: Trực tiếp – quan trọng hơn bởi histone deacetylase-2 (HDAC2) – đảo ngược quá trình acetyl hóa histone và ức chế các gene gây phản ứng viêm.

Đọc trọn vẹn bài viết tại đây.

INTERLEUKINS & CHEMOKINES

INTERLEUKINS & CHEMOKINES

Phùng Trung Hùng – Nguyễn Phước Long

Tổng quan

Miễn dịch học phân tử là một môn học rất khó tiếp cận vì nhiều lý do. Thứ nhất, nó có quá nhiều chi tiết, mà thỉnh thoảng cần phải nắm bắt đầy đủ một khối lượng lớn chi tiết nhất định thì mới có thể hiểu được một định nghĩa hoàn chỉnh. Để giải quyết được khó khăn này, chúng ta cần thiết phải tập trung nắm bắt bức tranh tổng quan trước hết. Khó khăn thứ hai là miễn dịch học có khá nhiều ngoại lệ trong qui luật và chính các ngoại lệ này góp phần khẳng định qui luật chung. Chi tiết này rất thú vị đối với các nhà miễn dịch học, nhưng với người mới bắt đầu đó là cả một trở ngại lớn. Tiếp theo, khó khăn lớn cuối cùng nằm ở chính bản thân hiểu biết của chúng ta về miễn dịch học còn nhiều thiếu sót, một khẳng định ngày hôm nay có thể bị bác bỏ ngay ngày hôm sau. Do vậy tài liệu được bạn sử dụng lúc này có thể đã không còn đúng nữa.

PHẦN A: INTERLEUKINS

 

Hình 49.1: Tổng quan về các vai trò của cytokines.

Các phân tử cytokines bản chất là protein tan trong nước, chúng có cách thức hoạt động theo kiểu tự tiết (autocrine), cận tiết (paracrine) và nội tiết (endocrine). Cytokines có rất nhiều vai trò, nhất là với hệ miễn dịch của cơ thể như tăng sinh – phát triển – biệt hóa – apoptosis và hóa hướng động (chemotaxis). Chúng bao gồm 35 phân tử interleukins (từ IL-1 đến IL-35), các colony stimulating factors (macrophage CSF, granulocyte CSF và granulocyte macrophage CSF), hormone tăng trưởng, erythropoietin (EPO), interferons, TNFs, NGF và các chemokines.

Hầu hết các thụ thể của cytokine đều có thành phần phức tạp từ các tiểu đơn vị có cấu trúc khác nhau do vậy có vai trò khác nhau. Ví dụ như thụ thể của GM-CSF có 2 tiểu đơn vị khác nhau là: GMRα đặc hiệu cho GM-CSF và βc có mặt trong cả thụ thể của GM-CSF, IL-3 và IL-5. Cả 2 tiểu đơn vị này đều có chứa một đầu N tận ở trong bào tương, một vòng xoắn xuyên màng và đầu tận C ở ngoài tế bào. GMRα có 2 domain fibronectin type III còn trong βc có chứa tới 4 domain này. Cấu trúc được xác định bằng tia X thành phần ngoại bào của các thụ thể này đã được xác định rõ còn domain ở trong bào tương vẫn còn chưa được biết.

Trong chương này, chúng ta sẽ khảo sát các interleukins chính, một thành viên của họ phân tử cytokines và lại rất quen thuộc với chúng ta, tuy nhiên ít khi được hệ thống hóa trọn vẹn.

Đọc thêm tại đây.

Bướu trán – Frontal bossing

Bướu trán

(Frontal bossing)

Nguyễn Phước Long – Nguyễn Thiện Luân

Mô tả triệu chứng

Đây là một tình trạng trán lồi lên (prominence) bất thường.

Tình trạng đi kèm

Phổ biến

–         Bệnh to cực (còn gọi là to đầu chi) – Rất thường xuất hiện cùng nhau, nhưng bản thân bệnh to cực là một rối loạn hormone hiếm gặp.

–         Hội chứng NST X dễ gãy – nguyên nhân thường gặp của chậm phát triển tâm thần ở nam, hộp sọ lớn có trán dồ (prominent forehead).

–         Sự tạo máu ngoại tủy (extramedullary haematopoiesis) – Xem thêm mô tả về “gương mặt sóc chuột (chipmunk facies)” ở chương 4, phần dấu hiệu ung bướu/huyết học.

Ít phổ biến

–         Hội chứng tích tụ hắc bào lớp đáy (basal cell naevus syndrome) hay còn gọi là hội chứng Gorlin – một tình trạng di truyền trội NST thường hiếm gặp. Ngoài triệu chứng bướu trán, bệnh nhân còn có thể có hàm nhỏ (small jaw), hóc mắt gian xa (ocular hypertelorism), u nang vùng họng.

Hình Mô tả một bệnh nhân nam 67 tuổi với hội chứng Gorlin (do người dịch cung cấp).

–         Giang mai bẩm sinh.

–          Cleidocranial dysostosis (tạo xương sọ – đòn bất toàn) – Một tình trạng rối loạn di truyền trội trên NST thường hiếm gặp. Đặc trưng bởi sự khiếm khuyết một phần hay toàn bộ xương đòn, khiếm khuyết cốt hóa sọ (defective ossification of the skull) và lệch diện khớp răng (faulty occlusion) do thiếu răng, răng mọc sai chỗ hoặc dư răng (supernumerary teeth).

Hình mô tả gương mặt, răng và xương đòn của bệnh nhân mắc cleidocranial dysostosis (do người dịch cung cấp).

–         Hội chứng Crouzon (Crouzon syndrome, hay branchial arch, hay pharyneal syndrome) là một rối loại di truyền do đột biến gene FGFR2 và FGFR3 (gene mã hóa cho Fibroblast growth factor receptor 2 và 3 – protein chịu trách nhiệm biến các tế bào chưa trưởng thành biệt hóa thành tế bào xương trong giai đoạn phát triển phôi). Rối loạn này gây ảnh hưởng đến sự hợp nhất sớm bất thường của các xương sọ (craniosynostosis). Điều này làm cho cấu trúc hộp sọ phát triển không bình thường, gây nên biến dạng đầu – mặt.

–          Hội chứng Hurler (mucopolysaccharidosis I, MPS-I) thường xảy ra ở trẻ từ 3 – 8 tuổi. Biến dạng mặt xảy ra trong khoảng 2 năm đầu đời. Đây là một tình trạng rối loạn chuyển hóa di truyền hiếm gặp. Nguyên nhân là do cơ thể không tạo được lysosomal α-L-iduronidase – một enzyme có tính cơ hữu toàn cơ thể, đặc biệt là ở dịch nhầy do tế bào đài tiết ra (có chức năng bảo vệ và hỗ trợ hoạt động cho các cơ quan, như phổi, hệ tiêu hóa, sinh dục…) và dịch quanh khớp. Điều này làm cho cơ thể không thể phân giải glycosaminoglycan (GAGs, hay còn gọi là mucopolysaccharides), gây tích tụ và làm tổn thương các cơ quan (đặc biệt là tim, phổi, xương). Lưu ý là cơ thể cần GAGs để tạo xương và mô.

GAGs được chia làm 4 nhóm: (1) Heparin/Heparan sulfate (HSGAGs) – tác nhân chống đông máu (2) Chondroitin/dermatan sulfate (CSGAGs) – thành phần dịch khớp; cả 2 được sản xuất ở bộ Golgi. (3) Keratan sulfate quan trọng trong tạo cầu nối N-glycosyl hay O-glycosyl của các proteoglycan. (4) Hyaluronic acid – thành phần chính của dịch ngoại bào, góp phần chính vào việc tăng sinh và kết tập của tế bào.

–         Hội chứng Pleiffer (tên gọi khác là acrocephalosyndactyly type 5, Craniofacial – skeletal – dermatologic dysplasia hay Noack syndrome) – có phần nào sự chồng lấp với hội chứng Crouzon. Đây là một rối loạn di truyền do sự hợp nhất sớm các xương sọ (craniosynostosis), gây biến dạng đầu mặt. Về cơ chế, nó là hậu quả của đột biến geneFGFR1 và FGFR2, cùng có vai trò biến tế bào chưa trưởng thành biệt hóa thành tế bào xương ở giai đoạn phát triển phôi. Sự đột biến này làm lộ trình tín hiệu của FGFR1và/hoặc FGFR2 kéo dài, gây hợp nhất sớm không chỉ ở xương sọ mà còn ở tay và chân.

–          Hội chứng Rubinstein – Taybi – Người bệnh có gương mặt đặc biệt, dáng người thấp, trí thông minh bị suy giảm từ mức trung bình đến nặng, khiếm khuyết mắt – tim – thận – răng và béo phì. Ung thư mô tạo máu (leukemia) thường xảy ra ở những người có hội chứng này.

Các đột biến trên gene CREBBP (mã hóa CREB), EP300, đột biến mất chất liệu di truyền trên NST 16 là các thay đổi di truyền liên quan đến hội chứng Rubinstein – Taybi.

–          Hội chứng Russell – Silver là một rối loạn chậm tăng trưởng trước và sau sinh. Trẻ em có tình trạng này thường có cân nặng lúc sinh thấp và thường không thể tăng cân như tỉ lệ trông đợi. Về gương mặt, chúng có gương mặt hình tam giác (triangular face) với trán dồ, cằm nhọn (narrow chin), hàm nhỏ,… Các rối loạn cũng có thể xảy ra ở một số phần của cơ thể như bất thường hệ tiêu hóa, chậm hiểu và chậm phát triển nhận thức.

Tới 40% số trường hợp không xác định được nguyên nhân nhưng hội chứng Russell – Silver có nguyên nhân di truyền phức tạp. Các nghiên cứu được tiến hành chú trọng đến các vùng đặc biệt của NST số 7 và số 11. Cần lưu ý rằng, người ta chỉ ra rằng ít nhất 1/3 số nguyên nhân liên quan tới hiện tượng methyl hóa DNA, đặc biệt là methyl hóa gene H19 và IGF2 ở NST 11. Khoảng 7 – 10% là do trẻ mắc bệnh nhận cả 2 NST số 7 từ mẹ (maternal uniparental disomy, UPD).

Cơ chế

Nhìn chung, triệu chứng bướu trán (frontal bossing) này liên quan tới các rối loạn thăng bằng của các hormone tăng trưởng ảnh hưởng tới mô cơ thể, nhất là mô xương.

Trong bệnh to cực, quá nhiều hormone tăng trưởng tuần hoàn gây ra sự tăng trưởng quá mức của hộp sọ và đặc biệt ở vùng trán.

Xem thêm các hội chứng phía trên để hiểu rõ từng trường hợp cụ thể.

Các câu hỏi, ý kiến thảo luận cũng như đóng góp cho bài viết vui lòng gửi về diễn đàn docsachysinh.com:

http://www.docsachysinh.com/forum/ hoặc

http://www.docsachysinh.com/forum/index.php?forums/noi-tiet-hoc-endocrinology.96/

Bệnh lý võng mạc do đái tháo đường

Bệnh lý võng mạc do đái tháo đường

(Diabetes retinopathy)

Nguyễn Thiện Luân – Nguyễn Phước Long

 

A. Các đốm xuất huyết nhỏ, vi phình mạch, các mảng xuất tiết nặng (mảng lipid), bệnh lý võng mạc hình vòng (circinate retinopathy), bất thường vi mạch trong võng mạc, và phù hoàng điểm. B. Chụp mạch huỳnh quang (fluorescein angiography) của mắt ở hình A. Vi phình mạch dưới dạng các đốm bắt huỳnh quang sáng hơn, tuy nhiên các đốm xuất huyết lại không bắt huỳnh quang. Vùng vô mạch rộng hơn.

Chỉnh sửa dưới sự cho phép từ Yanoff M, Duker JS, Ophthalmology, 3rd edn, London: Mosby, 2008: Fig 6-19-1.

 

Hình ảnh bệnh võng mạc không tăng sinh với các vết xuất huyết, mảng xuất huyết và xuất tiết dạng bông.

Chỉnh sửa với sự cho phép từ Yanoff M, Duker JS, Ophthalmology, 3rd edn, London: Mosby, 2008: Fig 6-19-2.

 

Bệnh võng mạc tăng sinh nặng do đái tháo đường với các hình ảnh xuất tiết dạng bông, bất thường vi mạch trong võng mạc và chảy máu tĩnh mạch.

Chỉnh sửa với sự cho phép từ Goldman L, Ausiello D, Cecil Medicine, 23rd edn, Philadelphia: Saunders, 2007: Fig 449-16.

Mô tả triệu chứng

“Bệnh lý võng mạc do đái tháo đường” là một thuật ngữ mang tính khái quát (umbrella term) mô tả những biến đổi đặc trưng ở mắt trong bệnh cảnh đái tháo đường. Một số thuật ngữ và nguyên nhân có sự trùng lắp với bệnh lý võng mạc do tăng huyết áp (hypertensive retinopathy) và có chung một số con đường đích (final pathways). Xem thêm mục “Bệnh lý võng mạc do tăng huyết áp” ở Chương 3, “Các triệu chứng tim mạch” (“Cardiovascular signs”).

Bệnh võng mạc do đái tháo đường có thể được phân thành một số nhóm như ở bảng 7-1.

Đọc bài đầy đủ  tại đây.