Category Archives: Miễn dịch học

Thụ thể 5-HT­­2C – Béo phì và triển vọng

Thụ thể 5-HT­­2C – Béo phì và triển vọng

Ngày nay béo phì đang ngày càng trở thành một vấn đề lớn đối với thế giới, đặc biệt là đối với các nước phát triển như Mỹ. Béo phì thường được đặc trưng bởi việc đo chỉ số khối của cơ thể (body-mass index- BMI). Đối với chỉ số BMI dành cho người châu Âu, một người với chỉ số BMI bằng hoặc cao hơn 30 thì được gọi là béo phì (obese), ngược lại một người có chỉ số từ 25-30 thì được gọi là thừa cân (overweight). Những bệnh như tiểu đường (diabetes), cao huyết áp (hypertension), bệnh động mạch vành (cononary atery disease), sỏi mật (cholelithiasis) có liên quan mật thiết đến sự tăng cao chỉ số BMI.

Định nghĩa béo phì theo WHO thì  “béo phì là tình trạng tích trữ mỡ quá mức và không bình thường tại một số vùng hay toàn bộ cơ thể có ảnh hưởng đến sức khỏe”. Hay đơn giản hơn béo phí là kết quả của tình trạng mất cân bằng giữa lượng kilocalories hấp thụ  vào và sự sử dụng năng lượng cho các hoạt động tiêu thụ năng lượng.  Mặc dù kiểm soát khối lượng cơ thể là một khái niệm đơn giản bằng cách giảm hấp thụ lượng lượng calo và tăng cường các hoạt động sử dụng nhiều năng lượng tuy nhiên rất nhiều người không thể làm được điều này. Vì vậy thuốc có lẽ là phương pháp có thể giúp đỡ cho một số người trong việc kiểm soát cân nặng của mình cũng như chữa béo phì.

R1 300x159 Thụ thể 5 HT­­2C   Béo phì và triển vọng

Hình 1. Béo phì đang là vấn đề trên thế giới

Fenfluramine và dexfenfluramine là 2 loại thuốc có tác dụng kiểm soát khối lượng cơ thể hay chống béo phì (anti-obesity). Tác dụng của 2 loại thuốc này thông qua sự hoạt hóa một thụ thể là 5-HT­­2C (5-HT­­2C receptor).

Fenfluramine Thụ thể 5 HT­­2C   Béo phì và triển vọng

Hình 2. Fenfluramine

I. Vậy thụ thể 5-HT­­2C ­là gì? Và nó có tác dụng gì trong việc kiểm soát cân nặng của một người?

Đề tìm hiểu về 5-HT­­2C ta hãy nói qua về serotonin.

Serotonin hay  5-hydroxytryptamine (5-HT) là một chất dẫn truyền thần kinh đơn amine  (monoamine neurotransmitter). Serotonin được tìm thấy chủ yếu trong hệ tiêu hóa (gastrointestinal tract- GI tract) , trong tiểu cầu (platelets) và hệ thần kinh trung ương (central nervous system– CNS) . Serotonin trong hệ thần kinh trung ương có một vai trò rất quan trọng trong việc điều hòa hành vi và có một vai trò liên quan trong các bệnh lý về hành vi như suy nhược (depression), tâm thần phân liệt (schizophrenia) hay  sự lạm dụng thuốc (drug abuse). Serotonin hoạt động trong hệ thần kinh trung ương bằng cách gắn lên các thụ thể trên bề mặt các neuron. Các thụ thể của serotonin (serotonin receptor also known as 5-HT receptor) là những thụ thể kết hợp với protein G (G-protein couple receptor- GPCR) và các kênh ion do phối tử điều hành (ligand-gate ion channel) được tìm thấy ở hệ thần kinh trung ương và hệ thần kinh ngoại biên (peripheral nervous systemPNS)

Thụ thể 5-HT­­2C ­­là một thụ thể trong nhóm thụ thể 5-HT. Nó là một thụ thể kết hợp với protein G (G-protein couple receptor- GPCR). Ở người gene mã hóa cho các thụ thể này nằm trên nhiễm sắc thể X (Xchromosome).

R6 300x235 Thụ thể 5 HT­­2C   Béo phì và triển vọng

Hình 3. Thụ thể 5-HT2C

II. Chức năng của  5-HT­­2C là gì ?

Thụ thể 5-HT­­2C là một trong rất nhiều vị trí gắn của serotonin. Chúng được hoạt hóa bởi serotonin, có tác dụng ức chế dopamine vànorepeniphine tiết ra ở một số vùng của não. Thụ thể 5-HT­­2C  cần thiết trong việc phát các tín hiệu điều hòa tâm trạng (mood), lo lắng (anxiety), ăn uống và hoạt động sinh sản. Thụ thể 5-HT­­2C có tác dụng điều hòa sự tiết dopamine trong thể vân (corpus statium), vỏ trán trước (prefonttal cortex), vùng hạ đồi (hypothalamus), hồi hải mã (hippocampus) và một số vùng khác.

Serotonin có liên quan đến sự điều hòa cơ bản và điều hòa stress gây ra bởi hormones vùng hạ đồi (hypothalamus) và tuyến yên (pituitary gland). Thụ thể 5-HT­­2C là một tín hiệu điều biến của trục hạ đồi tuyến yên thượng thận (hypothalamus-pituitary-adrenal axis-HPA axis). Trục hạ đồi tuyến yên thượng thận có vai trò chính trong việc kiểm soát đáp ứng căng thẳng liên quan đến đáp ứng chiến đấu hay bỏ chạy (fight or flight respone). Vì vậy kéo dài hoạt động và sự rối loạn của trục HPA góp phần gây ra các triệu trứng suy nhược hay lo lắng có thể thấy trong các tình trạng bệnh về tâm lý (psychopathological).

R3 300x195 Thụ thể 5 HT­­2C   Béo phì và triển vọng

Hình 4. Cơ chế hoạt động của 5-HT2C

III. Thụ thể 5-HT­­2C kiểm soát sự thèm ăn (appetide control)

Thụ thể 5-HT­­2C  là trung gian tác động của nhiều loại thuốc sản sinh serotonin lên hành vi ăn uống. Rất nhiều nghiên cứu đã chỉ ra rằng hoạt hóa thụ thể 5-HT­­2C sẽ điều hòa sự thèm ăn, tiêu thụ thức ăn bằng cách thúc đẩy sự no. Ngăn chặn sự thèm ăn bằng cách hoạt hóa thụ thể 5-HT­­2C, vì vậy các tác nhân chọn lọc có ái lực cao đối với thụ thể 5-HT­­2C hơn các thụ thể 5-HT­­2A và 5-HT­­2B đang được phát triển để chữa béo phì.

Ngoài ra các chất đồng vận với thụ thể 5-HT­­2C (5-HT2C receptor agonists cũng rất thích hợp trong điều trị các bệnh về tâm lý. Các chất đồng vận thụ thể 5-HT­­2C được hy vọng sẽ làm giảm các triệu chứng của bệnh tâm thần phân liệt bằng cách giảm  dopamine (reduce dopamine release).

R5 297x300 Thụ thể 5 HT­­2C   Béo phì và triển vọng

Hình 5. Cơ chế tác động của một thuốc lên thụ thể 5-HT2C

IV. Kết luận

  • Béo phì là tình trạng tích trữ mỡ quá mức và không bình thường tại một số vùng hay toàn bộ cơ thể có ảnh hưởng đên sức khỏe. Đây là một vấn ngày càng phổ biến ở hầu hết các nước đặc biệt là các nước phát triển.

  • Thụ thể 5-HT­­2C ­là một thụ thể của serotonin, là thụ thể kết hợp với protein G và có gen mã hóa nằm trên nhiễm sắc thể X

  • Thụ thể 5-HT­­2C có nhiều chức năng quan trọng trong điều khiển hành vi, hay liên quan đến các bệnh tâm lý, nội tiết hay sinh dục.

  • Ngày này các loại thuốc đồng vận với thụ thể 5-HT­­2C được phát triển nhằm chữa các về béo phì và các bệnh về tâm lý.

Anh Nguyễn

http://www.anhvanykhoa.com – Anh Văn Y Khoa

Hormone kiểm soát sự chuyển hóa Calcium & Phosphate

Phùng Trung Hùng – Nguyễn Phước Long

Calcium là một phân tử tín hiệu nội bào thiết yếu, nó đóng vai trò rất quan trọng trong rất nhiều quá trình hoạt động của tế bào và cơ chế cụ thể đã được trình bày trong chương viết về lộ trình sinh tín hiệu tế bào. Do vậy, ở đây ta sẽ chỉ đề cập đến các đặc tính hóa sinh học quan trọng của calcium, phosphate, các hormone và quá trình kiểm soát hoạt động của calcium.

Hình 18.1: Cân bằng nội môi của calcium trong cơ thể.

Hệ thống kiểm soát cân bằng nội môi của calcium rất nhạy cảm với nồng độ calcium bên trong và bên ngoài tế bào nhờ vào các hormone điều hòa calcium đến các cơ quan như thận, xương và ruột non; tác động đến quá trình huy động, bài tiết và hấp thu calcium của tế bào. Có 3 hormone chính, lần lượt là:

–          1,25-dihydroxycholecalciferol: Một steroid hormone được tạo thành từ vitamin D ở gan và thận, vào máu tuần hoàn và được mang bởi globulin gắn vitamin D. Bước hoạt hóa cuối cùng để tạo thành calcitriol xảy ra chủ yếu ở thận nhưng cũng có mặt ở một vài nơi khác (như tế bào keratin và đại thực bào). Nó làm tăng sự hấp thu calcium ở ruột non. Lưu ý là, PTH tăng sản xuất calcitriol thông qua lộ trình tín hiệu cAMP. Calcitriol kiểm soát hoạt tính của 1α-hydroxylase bởi cơ chế tác hồi âm trực tiếp tại thận và ức chế sự tiết PTH.

Hình 18.2: Phân bố vai trò của Ca2+ và phosphate.

–          Hormone tuyết cận giáp (parathyroid hormone, PTH): Đây là một chuỗi polypeptide đơn có 84 amino acid, trọng lượng phân tử khoảng 9500 Da. Chức năng sinh lý của nó liên quan đến vị trí đầu N của peptide. Từ tiểu phân 1 đến 27 là vị trí gắn của hormone với thụ thể PTH và hoạt tính hormone. Nó được tiết ra ở tuyến cận giáp, có vai trò chính là huy động calcium từ xương và tăng hấp thu calcium từ ruột non, giảm thải calcium và tăng thải phosphate qua đường niệu. Khi nồng độ huyết tương của Ca2+ dưới 7mg/dL (1.75 mM), sự bài tiết Ca2+ sẽ giảm. Ở xương, PTH tham gia cả quá trình đồng hóa và dị hóa xương; trong ống nghiệm, nó tác động lên tạo cốt bào bằng cách ức chế sự hình thành collagen týp 1, phosphatase kiềm và osteocalcin; nhưng trong tế bào, người ta lại thấy nó tăng hoạt tính của osteoblast và do vậy nồng độ osteocalcin và phosphatase kiềm đôi lúc lại tăng. (năm 2008 người ta còn phát hiện một số thụ thể của PTH ở hủy cốt bào, được mô tả ở hình dưới đây). PTH hoạt động qua lộ trình tín hiệu của cAMP là chủ yếu và một phần rất nhỏ qua lộ trình của Ca2+ nội bào.

Hình 18.3: Quá trình tạo ra pre-proparathyroid hormone. Sau đó, pre-pro-PTH được phân cắt tại ER để tạo thành pro-PTH và cuối cùng PTH được tạo ra ở bộ Golgi trước khi được tiết ra ngoài bởi các túi tiết.

Hình 18.4: Sự kiểm soát sự tạo thành hủy cốt bào và hoạt tính của tạo cốt bào ở tế bào stroma. PTH tác động trên thụ thể PTH/PTH-related protein (PTHrP) có ở tiền tạo cốt bào để tăng sản xuất macrophage colony-stimulating factor (M-CSF), ligand của thụ thể hoạt hóa NFκB (RANK) và giảm sản xuất osteoprotegerin (OPG). Ligand của M-CSF và RANK kích hoạt sản xuất hủy cốt bào và tăng hoạt tính của hủy cốt bào trưởng thành bằng cách gắn vào thụ thể RANK. OPG khóa sự tương tác giữa RANK và ligand của nó.

Hình 18.5: Sơ đồ giản lượt lộ trình tín hiệu của PTH.

–          Calcitonin: Hormone này được tiết bởi tuyến giáp, có vai trò giảm nồng độ của calcium trong máu, đối trọng với vai trò của PTH. Thời gian bán hủy của calcitonin là khoảng 10 phút. Sự tiết calcitonin được hoạt hóa bởi catecholamines, glucagon, gastrin và cholecystokinin và tình trạng tiết bất thường liên quan đến tình trạng carcinoma tủy giáp hoặc tăng sản tế bào C tuyết giáp do vậy có thể đóng vai trò như một marker. Calcitonin hoạt động thông qua các thụ thể của nó (CTR), các thụ thể này là thành viên của họ GPCRs. Trong đó, thể phong phú nhất là hCTRI1+, thuộc lộ trình Gs – AC.Không chỉ có calcitonin, calcitonin gene-related peptide (CGRP), amylin (vai trò của nó là ngăn cản sự hủy xương, giảm lượng thức ăn đưa vào cơ thể, giảm tiết dịch vị và ngoài việc có mặt ở xương, nó còn xuất hiện ở tụy trên bệnh nhân bị tiểu đường týp 2, điều này gợi ý rằng nó có một vai trò nhất định trong tình trạng bệnh lý này), adrenomedullin (có tác động giãn mạch nhưng cách thức nó hoạt động vẫn còn phải nghiên cứu nhiều hơn), calcitonin receptor-stimulating peptide 1 (CRSP1) và intermedin (thành viên mới nhất của nhóm này, có mặt ở tuyến yên và ống tiêu hóa) đều có vị trí gắn ái lực cao trên bề mặt tế bào bởi các thụ thể GPCR và RAMP.

Ngoài 3 hormone trên, không thể không nhắc đến vai trò của FGF23. Nó có vai trò quan trọng trong sự chuyển hóa phosphate bình thường. Quá biểu hiện FGF23 sẽ gây nên tình trạng hạ phosphate máu và giảm hoạt tính của 1α-hydroxyl hóa 25(OH)D. Ngoài ra, FGF23 còn giảm các kênh tải phosphate phụ thuộc Na+ ở cả ruột non và thận do vậy nó cũng đóng vai trò điều hòa hoạt động tải phosphate ở cả hai vị trí này. FGF23 đồng thời giảm nồng độ calcitriol lưu thông trong máu bởi vì tác động vào giai đoạn dịch mã của việc tổng hợp 25(OH)D 1α-hydroxylase và tăng biểu hiện của 24-hydroxylase (enzyme có vai trò chính trong việc bất hoạt calcitriol). FGF23 hoạt hóa thụ thể FGF 1 có mặt ở Klotho (một protein xuyên màng chuỗi đơn, có vai trò như một đồng thụ thể); người ta thử nghiệm trên chuột loại bỏ gene mã hóa Klotho thì thấy rằng nồng độ phosphate và calcitriol đều tăng lên, điều này cho thấy rằng Klotho là trung gian điều hòa hoạt tính của FGF23.

Xem toàn bộ bài viết tại đây.

Sinh lý học vitamins và khoáng chất

Phùng Trung Hùng – Lê Minh Châu – Nguyễn Phước Long

Vitamin là những phân tử hữu cơ đóng vai trò rất quan trọng đối với cơ thể chúng ta. Trong đó,  chức năng cofactor (co-enzyme) trong phản ứng enzyme là quan trọng nhất. Các vitamin chỉ được cung cấp bởi thức ăn hằng ngày chứ không được cơ thể tổng hợp và được chia làm 2 loại: tan trong nước và tan trong dầu.

Chất khoáng rất quan trọng trong các phản ứng sinh hóa của cơ thể. Có 2 loại chất khoáng: nguyên tố đa lượng và nguyên tố vi lượng. Nguyên tố đa lượng gồm: sodium, magnesium, phosphorus, sulfur, chlorine potassium và calcium. Nguyên tố vi lượng gồm: các nguyên tố cần thiết cho cơ thể  (manganese, iron, cobalt, nickel, copper, zinc, selenium, molybdenum và iodine) và các nguyên tố không thiết yếu (boron, chromium, fluoride và silicon)

Thiamin

Hình 17.1: Cấu trúc của thiamin. Đây là vitamin được phát hiện đầu tiên.

Còn được gọi là thiamine hay vitamin B1. Thiamin được tạo từ 1 phân tử dẫn xuất của pyrimidine nối với 1 phân tử thiazole bằng cầu nối methylene. Ở não và gan dưới tác động của enzyme thiamin diphosphotransferase, thiamin nhanh chóng chuyển thành dạng hoạt động (thiamin pyrophosphate, TPP).

Thiamin pyrophosphophate

TPP là cofactor của enzyme tham gia xúc tác phản ứng trong chu trình TCA hay xúc tác các phản ứng transketolase trong con đường pentose phosphate(pyruvate dehydrogenase (PDH) và α-ketoglutarate dehydrogenase. Chính vì vai trò này mà khi thiếu thiamin, tế bào sẽ giảm khả năng tạo ra năng lượng.

Hình 17.2: Cơ chế chuyển hóa kị khí.

Lượng thiamin đưa vào cơ thể dao động trong khoảng từ 1-1.5 mg/ngày ở người lớn. Dù vậy lượng thiamin này cần cân đối với lượng calo đưa vào (đối với khẩu phần ăn chứa nhiều carbohydrate thì cần phải tăng lượng thiamin cần được đưa vào).

Hình 17.3: Quá trình tổng hợp TPP.

Hình 17.4: Nitrogen tích điện dương trên vòng thiazole của TPP sẽ giúp phản ứng decarboxyl xảy ra, tạo thành hydroxyethyl-TPP.

Trong quá trình phân hóa carbohydrate không có oxygen, pyruvic acid được tạo ra rồi sau đó bị khử thành lactic acid khi tế bào cơ hoạt động. Khi lactic acid vào thể dịch, nó sẽ được oxy hóa bởi oxygen để trở thành lại pyruvic acid; phân tử này được tích lũy trong cơ thể và sau đó được chuyển đổi thành AcetylCoA (dưới sự xúc tác của TPP/cocarboxylase pyruvate carboxylase, Co A, NAD nicotinamide adenine dinucleotide và lipoic acid).

Các biểu hiện lâm sàng của thiếu hụt thiamin

Các triệu chứng sớm là: Táo bón, giảm ngon miệng, buồn nôn, trầm cảm, bệnh lý thần kinh ngoại biên và mệt mỏi. Thiếu thiamin mạn đưa đến những triệu chứng nghiêm trọng hơn đối với thần kinh như: ataxia, rối loạn tâm thần, mất khả năng phối hợp mắt (loss of eye coordination). Thiếu thiamin lâu ngày có thế làm xuất hiện các triệu chứng lâm sàng có liên quan đến khiếm khuyết ở hệ tim mạch và hệ cơ.

Beriberi là bệnh thiếu thiamin trầm trọng nhất, do chế độ ăn nhiều carbohydrate nhưng lại thiếu thiamin. Ngoài ra thiếu thiamin còn gây hội chứng Wernicle-Korsakoff, thường thấy ở những bệnh nhân nghiện rượu lâu năm do chế độ ăn nghèo dinh dưỡng. Hội chứng Wernicle-Korsakoffgồm: “wet brain” và sau đó là suy giảm trí nhớ ngắn hạn. Những bệnh nhân mắc hội chứng Wernicle-Korsakoff thường có bất thường về chuyển hóa ngay từ lúc mới sinh và hội chứng chỉ xảy ra khi chế độ ăn thiếu cân bằng thiamin. Người ta nghĩ rằng những người này thường có bất thường về enzyme transketolase.  Mặc dù đã có rất nhiều enzyme transketolase được nghĩ là liên quan đến hội chứngWernicle-Korsakoff nhưng hiện nay vẫn chưa có đột biến nào được tìm thấy trên các gene mã hóa enzyme được dòng hóa từ những cha mẹ có hội chứng này.

 

 

Riboflavin

Riboflavin tạo nên các coenzyme: flavin mononucleotide (FMN) và flavin adenine dinucleotide (FAD). Riboflavin tổng hợp 2 cofactor này theo 2 bước. FMN được tổng hợp từ riboflavin thông qua enzyme riboflavin kinase phụ thuộc ATP (RFK). RFK đưa nhóm phosphate đến kết hợp với đầu tận hydroxyl của riboflavin và chuyển thành FAD khi có mặt AMP (được tạo ra từ ATP) thông qua hoạt động của FAD pyrophosphorylase (hay còn được gọi là FMN adenylyltransferase, FMNAT).

Hình 17.5: Mối liên quan giữa RF, FMN và FAD.

Các flavoprotein là những enzyme cần đến FMN và FAD. Vài enzyme này có ion kim loại nên được gọi là metalloflavoprotein. Cả 2 loại enzyme đều có trong các phản ứng oxi hóa khử (ví dụ: succinate dehydrogenase và xanthine oxidase).  Khi phản ứng xảy ra, FMNH2 và FADH2 được tạo thành. FADH2 có hydrogen ở nitrogen 1 và 5. Một ngày, một người lớn cần 1,2 đến 1,7 mg riboflavin

Triệu chứng lâm sàng của thiếu Flavin

Thiếu riboflavin rất hiếm ở Mĩ vì chế độ ăn nhiều trứng, sữa, thịt và ngũ cốc. Thiếu hụt Riboflavin chỉ gặp ở những người nghiện rượu lâu năm do chế độ ăn thiếu dinh dưỡng hằng ngày của họ.

Các triệu chứng của thiếu riboflavin: ngứa và đỏ mắt, viêm khóe miệng và nứt môi (môi và miệng xuất hiện các vết nứt và đau), mắt đỏ, viêm lưỡi (viêm làm lưỡi có màu tím), tăng tiết bã nhờn (gàu và vẩy xuất hiện ở da đầu và mặt), run, uể oải và sợ ánh sáng. Riboflavin phân hủy khi gặp ánh sáng do vậy các trẻ sơ sinh bị tăng bilirubin trong máu được điều trị bằng liệu pháp ánh sáng dễ bị thiếu hụt riboflavin.

Hình 17.6: Flavin coenzyme có thể thamg gia phản ứng oxi hóa – khử 1 hay 2 electron để tạo thành gốc tự do flavin trung gian.

Niacin

Còn được gọi là vitamin B3, được tạo nên bởi nicotinic acid và nicotinamide. Niacin cần thiết để tổng hợp nicotinamide adenine dinucleotide (NAD+) và nicotinamide adenine dinucleotide phosphate (NADP+) – 2 dạng hoạt động của vitamin B3. NAD+ và NADP+ đều là cofactor của nhiều enzyme dehydrogenase như lactate dehydrogenase và malate dehydrogenase.

Xét về bản chất Niacin không được xem là vitamin thật sự vì niacin có thể được tạo từ amino acid tryptophan.  Mặc dù vậy, khả năng tổng hợp niacin của tryptophan rất kém (để tổng hợp được 1 mg niacin cần đến 60 mg tryptophan) và để tổng hợp được niacin từ tryptophan còn cần các vitamin B1, B, B6Mỗi ngày, một người lớn cần được cung cấp 13 đến 19 NE (niacin equivalent), 1 NE tương đương với 1 mg niacin tự do.

Những triệu chứng lâm sàng của thiếu niacin và nicotic acid

Khẩu phần ăn thiếu niacin hay tryptophan có thể dẫn đến các hậu quả sau: viêm lưỡi (lưỡi trở nên tím), viêm da, sụt cân, tiêu chảy, trầm cảm và mất trí. Pellagra là bệnh bao gồm các triệu chứng nặng của thiếu niacin như là trầm cảm, viêm da, tiêu chảy. Ngoài khẩu phần ăn, một số tình trạng sinh lí (như mắc bệnh Hartnup) hay đang dùng thuốc  Isonazid (dạng hydrazide của isonicotinic acid) để điều trị bệnh lao cũng có thể dẫn đến tình trạng thiếu hụt niacin. Trong bệnh Hartnup, khả năng hấp thu tryptophan của cơ thể bị suy giảm và trong malignant carcinoid syndrome,  quá trình chuyển hóa tryptophan bị thay đổi do serotonin được tổng hợp quá nhiều.

Nicotinic acid (không phải nicotinamide),khi dùng ở liều 2-4g/ngày có thể làm hạ nồng độ cholesterol trong bào tương và được dùng trong điều trị bệnh cholesterol trong máu cao. Cơ chế của việc này là, ở liều lượng như trên, nicotinic acid làm giảm sự huy động acid béo từ mô mỡ cũng như giải phóng glycogen và mỡ dự trữ trong cơ vân và cơ tim. Sự tạo uric acid luôn đi kèm với việc tăng glucose trong máu vì vậy không dùng nicotinic acid cho người béo phì có đái tháo đường và người bị bệnh gout.

Pantothenic acid

Hình 17.7: Cấu trúc của Pantothenic acid.

Còn được gọi là vitamin B5. Pantothenic acid được tạo thành từ β-alanine và acid pantoic. Quá trình tổng hợp coenzyme A từ pantothenate trải qua 5 giai đoạn. Dưới tác động của pantothenate kinase, nhóm hydroxyl của pantothenateđược phosphoryl hóa và nhóm sulfhydryl phản ứng của cysteine được thêm vào nhờ vào hoạt động của phosphopantothenoylcystein synthase. Sau 3 phản ứng nữa, phân tử được khử carboxyl và ADP được thêm vào để tạo nên coenzyme A hoàn chỉnh về chức năng.

Pantothenate cần cho quá trình tổng hợp coenzyme A – CoA và cũng là thành phần câu tạo nên protein vận chuyển nhóm acyl (acyl carrier protein – ACP) của quá trình tổng hợp acid béo. Vì vậy, pantothenate cần cho quá trình chuyển hóa của carbohydrate trong qua chu trình TCA. Ít nhất 70 enzyme cần CoA hay ACP cho hoạt động của chúng.

Tình trạng thiếu hụt pantothenic acid rất hiếm gặp vì chúng có trong ngũ cốc nguyên chất, đậu và thịt. Rất khó phát hiện các tình trạng thiếu hụt pantothenic acid vì tình trạng có các triệu chứng rất giống triệu chứng thiếu hụt các vitamin B khác như là đau rát bàn chân, biến dạng da, chậm phát triển, chóng mặt, rối loạn tiêu hóa, nôn, bồn chồn, chuột rút.

Vitamin B6

Chất khoáng

Calcium: cần cho quá trình khoáng hóa xương, chức năng tim mạch, chức năng của hệ tiêu hóa co cơ và đông máu. Biểu hiện và chức năng của Ca2+ sẽ được đề cập rõ ràng hơn ở các chương khác.

Chlorine (hay chloride ion): quan trọng trong việc duy trì chức năng của các bơm tế bào và được dùng để tạo HCl trong dạ dày.

Sắt: mặc dù là nguyên tố vi lượng nhưng chúng có vai trò rất quan trọng trong việc vận chuyển oxygen. Sắt là trung tâm chức năng của hem và vai trò của sắt là gắn oxi phân tử vào heme của hemoglobin để vận chuyển oxi từ phổi đến mô.

Magnesium: cần cho quá trình khoáng hóa xương và cần để ATP có thể hoạt động. Tất cả ATP trong tế bào đều có magnesium bám vào phosphate, phức hợp magnesium-ATP này giúp cho ATP có thể dễ dàng tách đầu tận phosphate (γ-phosphate) trong quá trình cung cấp năng lượng trong chuyển hóa tế bào. Cơ chế điều hòa nồng độ của Magnesium sẽ được thảo luận ở một chương riêng.

Phosphorus:là chất điện phân hệ thống quan trọng nhất, có vai trò như chất đệm trong máu dưới dạng phosphate ion PO43–. Phosphate cũng cần cho quá trình khoáng hóa xương và sử dụng năng lượng.

Potassium:là chất điện phân tuần hoàn chủ chốt trong quá trình điều hòa kênh Na+ phụ thuộc ATP, kênh này còn được gọi là Na+/K+-ATPases và chức năng cính của nó là dẫn truyền xung thần kinh trong não.

Sodium: cũng là chất điện phân tuần hoàn chủ chốt trong quá trình điều hòa kênh Na+ phụ thuộc ATP, kênh này còn được gọi là Na+/K+-ATPases và chức năng cính của nó là dẫn truyền xung thần kinh trong não.

Sulfur: có chức năng chính trong chuyển hóa amino acid nhưng cũng cần để điều chỉnh phức hợp carbohydrate có trong protein và lipid . Mặc dù vậy ở chức năng sau, sulfur có thể trở thành amino acid methionine

Nguyên tố vi lượng có chức năng chủ yếu là làm cofactor hay điều hòa chức năng của enzyme. Từ vi lượng nói lên rằng các chất khoáng này có thể tác động lên cơ thể dù có liều lượng rất nhỏ.

Đồng: quan trọng trong quá trình tạo máu, tổng hợp hemoglobin và tạo xương. Đồng còn có khả năng tạo năng lượng, chữa lành vết thương, đóng vai trò trong việc tạo vị giác, và góp phần tạo nên màu tóc và da. Đồng cũng tham gia vào sự tạo thành collagen (protein nhiều nhất trong cơ thể) nên đồng rất quan trọng trong việt tạo da, xương và mô liên kết

Iodine:cần cho quá trình tổng hợp hormone tuyến giáp vì vậy chúng đóng vai trò quan trọng trong việc điều hòa chuyển hóa năng lượng thông qua chức năng của tuyến giáp

Manganese: tham gia vào phản ứng chuyển hóa protein và chất béo, giúp cho hệ thần kinh khở mạnh, cần thiết cho chức năng tiêu hóa, tăng trưởng xương, chức năng miễn dịch. Ngoài ra manganese còn cần thiết cho chức năng của super oxide dismutase – SOD, enzyme cần cho quá trình ngăn chặn super oxide anions phá hủy tế bào.

Molybdenum” có vai trò chủ yếu là làm cofactor cho vài oxidase như xanthine oxidase (trong quá trình chuyển hóa purine nucleotide catabolism), aldehyde oxidase và sulfite oxidase.

Selenium:có vai trò điểu chỉnh hoạt động của  glutathione peroxidasethông qua sự gắn kết của nó vào protein để tạo selenocysteine.

Kẽm: là cofactor của hơn 300 enzyme khác nhau. Kẽm tương tác với insulin nên chúng vai trò rất quan trọng trong quá trình điều hòa lượng glucose trong máu thông qua hoạt động của insulin. Kẽm cũng thúc đẩy quá trình lành vết thương, điều hòa chức năng miễn dịch, là cofactor của các enzyme chống oxy hóa và rất cần thiết cho quá trình tổng hợp protein và tạo collagen.

Xem toàn bộ bài viết tại đây.

BẢN ĐỒ LIPID CỦA TẾ BÀO ĐỘNG VẬT CÓ VÚ

Phùng Trung Hùng – Nguyễn Phước Long

CHÚNG TA ĐANG Ở ĐÂU TRONG HIỂU BIẾT VỀ SINH GIỚI?

Hình 20.1: Sự “tiến hóa” từ “genomics” đến lipidomics xuyên suốt qua proteomics và metabolomics. Genomics: Bản đồ hóa toàn bộ DNA và RNA. Proteomics: Xác định, giải trình tự và phân loại chức năng của protein.Metabolomics: Phân tích toàn bộ các quá trình chuyển hóa ở các điều kiện cho sẵn. Lipidomics: Phân tích một cách có hệ thống và sự phân loại của toàn thể lipid trong cơ thể và sự tương tác của nó. TLC: thin-layer chromatography; HPLC: High-performance liquid chromatography; GC: Gas chromatography; ESI-tandem MS: Electrospray ionization-tandem mass spectroscopy; MALDI-TOF: Matrix-assisted laser desorption/ionization time-of-light mass spectroscopy; NMR: Nuclear magnetic resonance.

Ngày nay, khi mà công nghệ phát triển (đặc biệt là ứng dụng phổ khối và khả năng mô hình hóa của tin sinh học) người ta đã phát hiện trong tế bào sống hàng nghìn loại lipid khác nhau. Để trả lời cho câu hỏi các loại lipid này có vai trò như thế nào đối với sự sống của tế bào, người ta đã xây dựng thành một hệ thống tiếp cận hoàn chỉnh, gọi là lipid học tế bào (cellular lipidomics). Nhằm xác định được cân bằng nội môi của lipid và quá trình nhiệt động học của nó, chúng ta phải  hiểu rõ sự chuyển hóa lipid, quá trình vận chuyển chúng xuyên qua các loại màng khác nhau, các phân tử đóng vai trò sensor hay effector,… Và để đạt được tất cả những điều đó, chúng ta còn cần phải hiểu rõ tính chất vật lí của các hỗn hợp lipid, hiệu ứng hóa học của nó đến các protein lân cận cả về cấu trúc lẫn chức năng. Cuối cùng, quan trọng hơn cả là xác định cho được chuyển hóa lipid đóng vai trò quan trọng như thế nào trong hệ thống tín hiệu của tế bào, hiểu được tổng hòa các mối quan hệ giữa chúng và các thụ thể, các protein đặc biệt trên màng tế bào, các túi tiết có bản chất lipid,… Đây là cách tiếp cận sinh học một cách căn bản, lập luận từ những bằng chứng có thật và định lượng hóa chúng – nhằm mục đích cuối cùng là nhất quán với quan niệm hiện nay về sinh học: Sinh học hệ thống (systems biology).

SƠ LƯỢC VỀ SỰ HÌNH THÀNH BÀO QUAN

Hầu hết các bào quan không thể được tạo mới hoàn toàn không có kế thừa: Chúng cần thông tin trong chính bào quan.

Hình 20.2: Tỉ lệ phân bố một số lipid trong các bào quan.

Khi tế bào phân chia, nó phải sao chép các bào quan. Nói chung, tế bào thực hiện điều này bằng cách kết hợp những phân tử mới vào bào quan có sẵn, sau đó làm tăng kích thước bào quan, tiếp đến, bào quan phân chia và phân phối cho hai tế bào con. Vì vậy, mỗi tế bào con thừa hưởng 1 hệ thống màng nội bào hoàn chỉnh từ tế bào mẹ. Sự thừa hưởng này là cần thiết vì 1 tế bào không thể tạo những cấu trúc màng nội bào từ hư vô. Nếu lưới nội chất bị xóa bỏ hoàn toàn khỏi 1 tế bào, làm thế nào tế bào có thể tái tạo lại được? Những protein màng tạo nên màng của lưới nội chất và thực hiện những chức năng của lưới nội chất thực chất cũng do lưới nội chất tạo ra. Lưới nội chất mới không thể tạo ra mà không có một lưới nội chất sẵn có, hay ít nhất là một màng đặc thù chứa các bơm chuyển vị protein cần để đưa protein từ tế bào chất đi vào lưới nội chất (các protein này bao gồm cả các bơm chuyển vị đặc hiệu.) Điều này cũng đúng với ty thể và lạp thể.

Hình 20.3: Cấu trúc của các glycero-phosphate lipid.

Do đó, có lẽ thông tin cần cho việc tạo một bào quan không chỉ nằm trên đoạn DNA mã hóa protein đặc trưng của bào quan. Thông tin ít nhất ở dạng 1 phân tử protein đặc trưng tồn tại trước đó trên màng bào quan cũng rất cần thiết, và thông tin này được chuyển từ tế bào ban đầu đến các thế hệ sau dưới hình thức bào quan. Có lẽ, thông tin đó cần cho việc truyền thừa các cấu trúc dưới tế bào, trong khi những thông tin trên DNA cần cho việc truyền lại cho đời sau trình tự nucleotide và trình tự amino acid.

Tuy nhiên, như những gì được bàn luận kỹ ở chương khác, lưới nội chất hình thành một dòng các bóng màng liên tiếp được kết hợp với một bộ phận của tập hợp các protein màng lưới nội chất và nhờ đó có thành phần khác với bản thân lưới nội chất. Tương tự, màng sinh chất liên tục tạo ra vô số những loại bóng màng nhập bào chuyên biệt khác nhau. Vì thế, có 1 số bào quan có thể được tạo thành từ bào quan khác và không được truyền lại cho đời sau trong phân bào.( VD: lysosome, phức hợp Golgi, peroxisome, endosome…).

Hình 20.4: Sự đa hình và cấu dạng phân tử của một số lipids.

SỰ TỰ SẮP XẾP LIPID VÀ SỰ PHÂN PHỐI Ở CẤP ĐỘ DƯỚI TẾ BÀO

Từ vi khuẩn đến các tế bào eukaryotes đều sử dụng glycerol làm bộ khung (backbone) cho hầu hết các lipid của chúng. Những phospholipids chính của vi khuẩn là phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) và cardiolipin (CL) (các tế bào eukaryote cũng có các phospholipids này). PG và CL được tổng hợp và giữ lại trong ti thể. Ngoài ra, ti thể cũng có enzyme PS-decarboxylase (PSD) có chức năng tổng hợp một nữa lượng PE của tế bào. PC và PI (phosphatidylinositol) là hai loại phospholipid chính ở tế bào eukaryote.

Hình 20.5: Sự phân bố các loại lipid chính ở động vật có vú nói chung.

PC có chứa hai chuỗi acyl béo (một no và một không no) và một đầu phân cực lớn do vậy nó có cấu trúc không gian hình trụ (cylindrical shape). Như ta đã biết, entropy cao nhất khi đuôi lipid càng xa đầu ưa nước hay các phân tử nước được giải phóng tối đa khỏi thành phần này (hiệu ứng kị nước), ta cũng tìm thấy điều này ở PC. Do những thuộc tính trên, PC có tính chất linh động cao và do vậy nó tạo nên tính chất sinh học của màng sinh học. Tuy nhiêu, màng sinh học cũng có từ 5 đến 10 loại lipid khác để có thể thực hiện tốt chức năng dẫn truyền lộ trình tín hiệu và giữ cho màng luôn có tính linh động.

Hình 20.6: Dạng ion hóa của CL tại pH sinh lý. CL chỉ được ion hóa một phần ở pH này (pK2 > 8.5) và do vậy có thể “nhốt” một proton bởi khả năng tạo liên kết hydrogen với gốc sn-2 hydroxyl của khung glycerol, kết quả là gắn kết được 2 PA trong cấu trúc của CL.

Hình 20.7: Điều hòa tổng hợp cholesterol

Hầu hết PE được tìm thấy ở màng sinh học đều có hình nón (cone shaped) và do vậy không thể tự nó tạo nên cấu trúc màng lipid kép được. Tính chất này khiến PE có khả năng gắn vào các protein màng để thực hiện các quá trình hợp nhất và phân đôi tế bào (fusion – fission). Khi xảy ra các điều kiện trung hòa điện tích, (charge neutralization – điện tích của một cation bị loại bỏ bởi hiện tượng adsorption – tạo lớp chất lỏng hoặc khí trên bề mặt chất rắn) mitochondrial phospholipid cardiolipin (CL) cũng có hiện tượng tạo kết cấu lớp lipid khác kết cấu kép.

Xem toàn bộ bài viết tại đây.

ĐẠI CƯƠNG VỀ MÀNG TẾ BÀO ĐỘNG VẬT NHÂN THỰC

Phùng Trung Hùng – Nguyễn Phước Long – Lê Phi Hùng – Lê Minh Châu

Chúng ta đã nói các tri thức cơ sở về cấu trúc màng tế bào xuyên suốt nội dung các chương trước. Do vậy, chương này sẽ đi sâu, đề cập một cách hoàn chỉnh và hệ thống hóa những tri thức về màng tế bào.

Giới thiệu về màng sinh học

Màng sinh học được cấu tạo bởi lipid, protein và các carbohydrate bán rắn. Màng sinh học có cấu trúc khảm động, luôn thay đổi thành phần cấu tạo trong suốt cuộc đời của tế bào, bao quanh tế bào và  có vai trò điều hoà các hoạt động của tế bào. Các màng bên ngoài tế bào tạo nên màng bào tương còn các màng bên trong tế bào tạo nên các màng trong của các bào quan đặc biệt như nhân và ti thể

Thành phần và cấu trúc của màng sinh học

Màng sinh học được cấu tạo bởi lipids, protein và carbohydrates.

Carbohydrates liên kết với lipid tạoglycolipid và liên kết với protein tạo nên glycoprotein. Các loại tế bào khác nhau có thành phần protein và lipid khác nhau. Protein chiếm từ 20% đến 70% khối lượng màng.

Hình 22.1: Cấu trúc lớp lipid kép và tính chất khảm động

Có 3 loại lipid màng chính là: glycerophospholipids, sphingolipids, và cholesterol. Các loại lipid này sẽ được đề cập kĩ hơn ở phần lipids, tổng hợp lipid, sphingolipid và cholesterol. Sphingolipids và glycerolphospholipid chiếm phần lớn khối lượng lipid màng. Các phân tử của 2 loại lipid này với đặc điểm cấu trúc một đầu phân cực (đầu ưa nước) và một đầu không phân cực (đầu kị nước) tạo thành một lớp lipid kép (lipid bilayer) với 2 đầu kị nước quay vào nhau (xem hình dưới) . Lớp lipid kép này có thể khuếch tán bên (lateral diffusion – các phân tử của lớp có thể di chuyển dễ dàng giữa 2 lớp và thay đổi chỗ cho nhau) cũng như có thể khuếch tán ngang (transvere diffusion, flip-flop – các phân tử lipid khuếch tán từ mặt này sang mặt khác của màng). Tuy nhiên các phân tử muốn qua màng theo kiểu flip-flop này cần tạo nên cấu trúc có các đầu phân cực bao bên ngoài để qua lõi hydrocacbon của lớp kép lipid nên việc vận chuyển chất theo kiểu này là rất khó nếu không có enzyme flipase hỗ trợ quá trình này.

Hình 22.2: Cấu trúc điển hình của một phosphate-lipid (phospholipid)

Màng sinh học cũng chứa protein, glycoprotein và lipoprotein. Có 2 dạng protein thường gặp trên màng là: protein xuyên màng (integral protein) và protein ngoại vi (peripheral protein). Các protein xuyên màng hay còn gọi là protein nội màng (intrinsic protein) bám chặt vào màng và nằm trong lớp lipid kép nhờ vào các liên kết kị nước còn protein ngoại vi còn được gọi là protein ngoại màng (extrinsic protein) liên kết với màng bằng các liên kết lỏng lẻo với các đầu phân cực (mặt trong hay mặt ngoài của lớp lipid kép) hay với protein xuyên màng. Các protein ngoại vi thường nằm ở mặt bào tưởng của màng sinh học hay mặt trong của các màng bào quan.

Bảng 22.1: CTHH một số acid béo không no

Các protein liên kết màng sinh học được gọi là lipoprotein, phần lipid của lipoprotein giúp phân tử protein này bám vào màng sinh học bằng liên kết trực tiếp với lớp lipid kép hay gián tiếp thông qua protein xuyên màng. Phần lipid này là các isoprenoid như farnesyl và geranyl – các acid béo như myristic, acid palimitic, glycoslphosphatidylinositol, GPI (còn được gọi là glipiated protein).

Hoạt động của lớp màng sinh học

Hình 22.3: Màng bào tương là vị trí thích hợp của nhiều protein bề mặt: Thụ thể, kênh ion, transporter và phân tử kết dính.

Protein và lipid phân bố trên màng không giống nhau. Ví dụ: mặt trong của lớp lipid kép có nhiều phosphatidylethanolamine còn mặt ngoài thì nhiều phosphatidyl choline. Các carbohydrate bám vào lipid hay protein được tìm thấy nhiều nhất ở mặt ngoài của màng. Sự phân bố không giống nhau giữa protein và lipid đã tạo ra các tiểu vùng (sub-domain) chuyên biệt cao trong màng và các cấu trúc có màng chuyên biệt cao (như lưới nội bào tương (ER), bộ máy golgi và các túi tiết). Các túi tiết tổng hợp các yếu tố tế bào trong ER rồi sau đó được đưa đến bộ máy Golgi và cuối cùng đến màng sinh học để hoạt hóa các protein xuyên màng như thụ thể của yếu tố tăng trưởng (growth factor receptor). Trong quá trình vận chuyển từ nang đến màng sinh học các protein tiết này đã trải qua nhiều sự biến đổi trong đó có cả hiện tượng glycosyl hóa.

Hình 22.4: Cấu trúc bất đối xứng của lớp phospholipid màng

Các túi tiết được bộ máy golgi xuất ra được gọi là túi tiết trưởng thành  (coated vesicle). Màng của các nang này được tạo bởi các protein giá đỡ chuyên biệt có khả năng tương tác với môi trường ngoại bào. Dựa vào protein tạo thành lớp bao của túi tiết, người ta phân các túi tiết này thành 3 loại chính: (1) túi clathrin (Clathrin-coated vesicle) bao gồm protein gian màng, GPI-linked protein và protein tiết để đưa đến màng sinh học. Các túi tiết này còn tồn tại trong quá trình nhập bào (như trong quá trình hấp thu LDL bào tương của gan thông qua thụ thể của LDL); (2) COPI (COP = coat protein) tạo nên bề mặt cho các túi vận chuyển giữa các khoang của bộ máy golgi. (3) COPII tạo nên bề mặt các túi tiết được chuyển tử ER sang bộ máy golgi.

Cấu tạo bề mặt màng của mỗi tế bào phụ thuộc vào các tế bào lân cận mà nó tiếp xúc. Bề mặt màng của tế bào tương tác với các thành phần ống còn được gọi là mặt đỉnh (apical surface), mặt còn lại được gọi là mặt đáy bên (basolateral surface). Hai bề mặt này có thành phần lipid và protein cấu tạo tương đối khác nhau.

Hình 22.5: Mô tả mặt đỉnh và mặt đáy bên của màng tế bào.

Hầu hết các tế bào nhân thực đều tiếp xúc với các tế bào kế cận và đây là cơ sở để tạo nên các hệ cơ quan. Các tế bào nằm kế cận nhau trao đổi chất với nhau thông qua các liên kết khe (gap junction). Liên kết khe là các kênh liên tế bào và được cấu tạo từ các connexin có nhiệm vụ chính là dinh dưỡng cho các tế bào của cơ quan không tiếp xúc trực tiếp với dòng máu.

Xem toàn bộ bài viết tại đây.

Có nên ngưng chích ngừa bệnh viêm gan siêu vi B không?

Với tư cách một thầy thuốc, tôi đã xuất hiện nhiều lần trên các phương tiện thông tin đại chúng để nói về các bệnh viêm gan B, và C. Trong đó, tôi đã đề cập đến chương trình chích ngừa bệnh viêm gan siêu vi B (VGSV B).

Một trong ba gia đình đau đớn vì mất con sau khi tiêm ngừa vắcxin VGSV B tại bệnh viện Hướng Hoá, Quảng Trị. Ảnh: CTV

Hôm nay, khi tin tức đang tràn ngập trên báo chí, tivi về việc ba trẻ sơ sinh xấu số ở bệnh viện Hướng Hoá, Quảng Trị bị tử vong ngay sau khi được chích ngừa bệnh VGSV B. Vắcxin này còn hạn dùng đến năm 2015, do công ty Vắcxin sinh phẩm số 1 (Vabiotech) thuộc bộ Y tế cung cấp. Theo trang web của công ty (http://vabiotech.com.vn/?act=info&id=8) vắcxin này đã “đoạt giải nhì VIFOTECH 1995, công trình đoạt giải nhì VIFOTECH 1995, giải thưởng KOVALEVSKAIA 1999, huy chương vàng hội chợ Vì tuần lễ xanh quốc tế, sản phẩm được chứng nhận đạt tiêu chuẩn Việt Nam và tiêu chuẩn quốc tế”.

Bên cạnh những giải thưởng khoa học đó, lần đầu tiên, y giới Việt Nam có được bằng chứng cụ thể về nguyên nhân của những cái chết xảy ra liên tiếp sau khi chích ngừa: cơ địa em bé trước khi chích hoàn toàn khoẻ mạnh, cái chết xảy ra chỉ dăm phút sau khi chích thuốc. Và quan trọng hơn hết, bằng chứng mổ tử thi mà theo báo cáo của bệnh viện đa khoa huyện Hướng Hoá, các cháu bé tử vong nghi do “sốc phản vệ” sau khi tiêm thuốc (nguồn:http://www.thanhnien.com.vn/pages/20130721/tam-dung-tiem-vac-xin-viem-gan-b-cho-tre-so-sinh-tai-quang-tri.aspx)

Dĩ nhiên, tôi nhận được rất nhiều câu hỏi, email, điện thoại… để chất vấn về sự việc này. Trong đó, hoàn toàn hữu lý khi nhiều bậc phụ huynh có ý định không cho con cái đi tiêm phòng bệnh VGSV B nữa. Họ có lý khi nói: “không tiêm chưa chắc đã chết, mà tiêm chết ngay như thế thì làm sao tôi dám mang con đi được?”

Để rộng đường dư luận, tôi đưa lại một số thông tin, có dẫn nguồn tham khảo từ những tạp chí y học có uy tín. Tự những con số sẽ nói lên tất cả!

Bệnh VGSV B có phổ biến và nguy hiểm không?

Việt Nam là một trong những nước có tỷ lệ VGSV B cao nhất thế giới: 20% (một phần năm dân số). Bệnh này là nguyên nhân hàng đầu của ung thư gan. 25% bệnh nhân mắc phải siêu vi B sẽ đi vào biến chứng xơ gan, ung thư gan nếu không điều trị. 100% ung thư gan ở trẻ em là do VGSV B.

Ở trẻ em Việt Nam, tỷ lệ bị mắc VGSV B vào khoảng từ 13 – 18%. Chủ yếu các em bị lây nhiễm theo chiều dọc từ mẹ sang con trong quá trình chuyển dạ.

Có thể phòng ngừa bệnh VGSV B không?

Tuy nguy hiểm, nhưng hoàn toàn có thể phòng ngừa được bệnh bằng chích ngừa. Vắcxin có thể ngừa được bệnh trong ít nhất 95% trường hợp. Ở Đài Loan, chỉ 10% sau khi áp dụng tiêm chủng đại trà cho trẻ em, tỷ lệ bé sơ sinh nhiễm bệnh từ 10% đã giảm còn 1%. Đồng thời, tỷ lệ ung thư gan ở trẻ em trong cùng thời điểm giảm gần 50%.

Thiên vương Lưu Đức Hoa, một người mắc bệnh VGSV B, đã được Chính phủ Trung quốc mời sang Hoa lục để cổ suý cho việc chích ngừa VGSV B. Với hiệu quả như vậy, vắcxin ngừa VGSV B đã được mệnh danh là vắcxin ngừa ung thư đầu tiên của nhân loại.

Miễn dịch với bệnh kéo dài trong bao lâu?

Với phác đồ chuẩn 0, 1, 6 tháng, hiệu quả bảo vệ của vắcxin có thể kéo dài ít nhất 15 năm, thậm chí cả đời. Trừ một số trường hợp đặc biệt, không cần thiết phải theo dõi nồng độ kháng thể để chỉ định tiêm nhắc liều thứ tư. Lý do: cơ chế bảo vệ của vắcxin chủ yếu là qua hệ miễn dịch tế bào, vai trò kháng thể chỉ là thứ yếu. Do đó, tiêm nhắc liều thứ tư sau 5 năm là một tuỳ chọn, không phải bắt buộc để bảo đảm hiệu quả bảo vệ của vắcxin.

Chủng ngừa có an toàn không?

Có nhiều tranh luận đã nổ ra quanh độ an toàn của vắcxin ngừa bệnh VGSV B. Tuy nhiên, hệ thống thu thập dữ liệu về an toàn thuốc của Hoa Kỳ cho thấy: từ năm 1991 – 1998, có 18 trẻ em tuổi từ 0 đến 28 ngày tử vong sau khi tiêm vắcxin ngừa viêm gan B. Phân tích chi tiết nguyên nhân tử vong cho thấy có 12 trường hợp chết do đột tử (sudden infant death syndrome hay SIDS), ba trường hợp do nhiễm trùng, một trường hợp do xuất huyết não, còn lại không rõ nguyên nhân.

Trang thông tin chính thức của trung tâm Kiểm soát bệnh tật Hoa Kỳ (CDC) khẳng định: “kể từ khi áp dụng vào năm 1982, đã có hơn 100 triệu lượt người được chích và hoàn toàn không ghi nhận được tác dụng phụ nghiêm trọng nào. Tác dụng phụ chủ yếu là đau chỗ tiêm chích” (http://www.cdc.gov/hepatitis/B/bFAQ.htm#bFAQ38)

Dựa vào những con số thống kê này, y học hoàn toàn không ghi nhận được trường hợp tử vong nào có liên quan trực tiếp, nhân quả với tiêm ngừa vắcxin VGSV B, nếu nó được bào chế đúng chuẩn, bảo quản đúng quy cách. Vắcxin này tiêm bắp thịt, nên nếu việc tiêm thuốc không đúng quy cách thì bất quá là không gây miễn dịch cho trẻ, không thể làm chết người được. Do đó, vắcxin ngừa VGSV B vẫn được tiếp tục sử dụng ở mức độ chương trình tiêm chủng toàn quốc ở hơn 150 quốc gia (bộ Y tế Mỹ từ năm 1991 đã áp dụng chương trình này cho toàn bộ trẻ sơ sinh).

Thông tin từ y văn và thế giới là vậy! Nhưng như nhiều chuyện đáng buồn khác, tình hình nước ta có những “đặc thù” riêng (?). Với tư cách một thầy thuốc và một người làm cha mẹ, tôi cũng đang chờ câu trả lời minh bạch, trung thực từ bộ Y tế.

Trong lúc chờ đợi, tôi vẫn khuyên bệnh nhân của mình đi chích ngừa VGSV B. Dĩ nhiên, với một loại vắcxin tin cậy (mặc dù chúng không có huy chương hay giải thưởng): Engerix-B (GSK), Recombivax HB (Merck) hay Twinrix (vắcxin phối hợp ngừa VGSV A và B, GSK). Xin đừng trách tôi “sính ngoại”: it nhất, tôi có quyền tin rằng bệnh nhân của mình sẽ không chết thảm, như nhiều em bé vô tội vừa qua.

BS LÊ ĐÌNH PHƯƠNG

SGTT

Ngừng toàn bộ việc tiêm phòng lô vắcxin viêm gan B ở Quảng Trị

Ngày 21.7, sau vụ ba trẻ sơ sinh tử vong ngay sau khi tiêm vắcxin phòng viêm gan B tại bệnh viện đa khoa huyện Hướng Hoá, Quảng Trị, Công an Quảng Trị đã vào cuộc tìm nguyên nhân cái chết. Trong khi đó, ông Trần Văn Thành, giám đốc sở Y tế tỉnh Quảng Trị cho biết, vắcxin tiêm cho ba trẻ sơ sinh nói trên sản xuất tại Việt Nam thuộc lô V-GB 020812E, nhằm phục vụ chương trình Tiêm chủng quốc gia, hoàn toàn miễn phí. Lô vắcxin được sản xuất năm 2012 và có hạn dùng đến năm 2015, do công ty Vắcxin sinh phẩm số 1 sản xuất. Bệnh viện đa khoa huyện Hướng Hoá vừa tiếp nhận lô vắcxin nói trên chiều 18.7.2013, từ trung tâm Y tế dự phòng tỉnh Quảng Trị. Trước sự việc này, tỉnh Quảng Trị đã cho niêm phong toàn bộ vỏ vắcxin đã tiêm cho ba trẻ nói trên và niêm phong 29 lọ vắcxin còn lại để gửi cơ quan chức năng. Nói rõ hơn với báo giới, ông Nguyễn Xuân Tường, giám đốc trung tâm Y tế dự phòng Quảng Trị cho biết, lô vắcxin trên do viện Pasteur Nha Trang – bộ Y tế cung cấp.

Theo lãnh đạo sở Y tế Quảng Trị, ngày 21.7, bộ trưởng bộ Y tế Trần Thị Kim Tiến đã vào đến Quảng Trị. Theo bộ trưởng, nếu đội ngũ y, bác sĩ bệnh viện Hướng Hoá của kíp trực làm đúng quy trình thì bộ Y tế phải làm rõ trách nhiệm của đơn vị cung cấp số vắcxin và nguồn gốc lô vắcxin này. Ngược lại, nếu kíp trực tiêm vắcxin viêm gan B không thực hiện đúng theo quy trình thì phải bị xử lý nghiêm theo đúng quy định của pháp luật. Tỉnh Quảng Trị cũng đã giao cơ quan chức năng kiểm tra toàn bộ quy trình chuyên môn của đội ngũ y, bác sĩ trực để xem có sai sót gì không.

Ông Nguyễn Đức Chính, phó chủ tịch UBND tỉnh Quảng Trị cho biết, nhận định ban đầu từ phía các cơ quan chức năng địa phương qua việc khám nghiệm ban đầu, có thể ba trẻ tử vong do sốc phản vệ. Tuy nhiên, các cơ quan chức năng vẫn chưa thể khẳng định nguyên nhân cuối cùng. Hiện tỉnh Quảng Trị đã thông báo về toàn tuyến y tế cơ sở dừng việc tiêm chủng lô vắcxin nói trên.

Quốc Nam

SINH HỌC TẾ BÀO MÁU

Phùng Trung Hùng – Nguyễn Phước Long

Giới thiệu chung

Hình 28.1: Minh họa sự hình thành của các tế bào máu từ tủy xương. Những tế bào ở dưới đường ngang được hình thành ở máu ngoại biên bình thường. Những vị trí hoạt động cơ bản của erythropoietin và những yếu tố kích thích tạo dòng khác (colony-stimulating factors – CSF) kích thích sự biệt hóa của các thành phần được đề cập. G = granulocyte;  M = macrophage; IL = interleukine; Thrombo, thrombopoietin; SCF, stem cell factor.

Tủy xương là nơi tạo ra tất cả các tế bào máu kể từ khi sinh vật ra đời. Nó gồm các tế bào gốc ở trạng thái ngủ trong nhiều năm và tồn tại suốt cuộc đời của sinh vật. Mỗi ngày, một phần rất nhỏ các tế bào này bị kích thích và tự phân chia (autoreproductive). Số lượng này tăng lên trong các trường hợp nhiễm khuẩn hoặc đang có phản ứng viêm.

Sự tạo máu có sự tham gia của hematopoietic growth factors (HGF), nó sẽ biệt hóa để tạo thành 3 dòng tế bào: Myeloid, erythroid và lymphoid.

Các hiện tượng nhân lên, biệt hóa và trưởng thành đan xen với nhau chặt chẽ. Các hình thái khác nhau quan sát được ở mỗi giai đoạn tương ứng riêng biệt với các biến đổi của khung tế bào ở nơi có tiếp xúc của mặt bào tương với màng bào tương và các protein màng phụ trách về hình dạng và sự dính của các tế bào này với môi trưởng của chúng. Các kháng nguyên màng của các tế bào máu được gọi là kháng nguyên biệt hóa (CD) theo số thứ tự phụ thuộc vào thứ tự phát hiện, đôi khi được kèm theo các chữ a,b hay c. Một số protein màng có mặt trên các tế bào gốc và đã tồn tại trong các tế bào đã biệt hóa (CD-18). Một số khác xuất hiện dần dần tùy theo sự biệt hóa, sự tiếp nhận thông tin đến tế bào do các cytokine truyền tin giữa các týp tế bào khác nhau.

Khi các tế bào trưởng thành đã sẵn sàng rời khỏi tủy xương, các enzyme tiêu protein đặc hiệu  (thuộc họ metalloproteinase) sẽ tách chúng ra khỏi các protein giá đỡ hoặc protein sẽ gắn với thụ thể tế bào và cho tín hiệu giải phóng các tế bào máu. Cần lưu ý là sự vận động tích cực của các tế bào máu phụ thuộc vào sự co của các phân tử actomyosine

Các khái niệm cơ bản về máu

Máu là mô liên kết đặc biệt gồm có ba loại tế bào máu là hồng cầu, bạch cầu và tiểu cầu. Các tế bào này nằm lơ lửng trong huyết tương và chuyển động nhiệt một cách vô trật tự.

Khi huyết tương được loại bỏ các yếu tố gây đông máu (như fibrin, thromboplastin,…) thì nó được gọi là huyết thanh, một dung dịch hơi ngả sang màu vàng. Huyết thanh chứa các yếu tố tăng trưởng (Growth factors) và những protein khác có nguồn gốc từ tiểu cầu. Nó được xác định là có nhiều thuộc tính sinh học khác với huyết tương nguyên thủy ban đầu.

Bình thường có khoảng 5 liters máu được vận chuyển một cách nhịp nhàng đi khắp cơ thể nhờ sức co bóp của tim xuyên suốt hệ thống tuần hoàn.

Hình 28.2: Thành phần protein trong huyết tương(Color atlas of physiology 5th)

Khi cho các chất kháng đông (như heparin, citrate,…) vào máu để ngăn chặn sự thành lập cục máu đông thì ta sẽ thu được một hỗn hợp chất lỏng được tách lớp và không trộn lẫn vào nhau (xem hình). Trong đó, tế bào hồng cầu (erythrocytes) nằm bên dưới và chiếm khoảng 45% thể tích toàn dung dịch đối với người bình thường, tuy nhiên có sự sai biệt chút ít ở hai giới. Từ đó, người ta đưa ra một tiêu chuẩn đánh giá chất lượng máu trong các phép xác nghiệm được định nghĩa như sau: “Hematocrit (Ht, Hct) là thể tích hồng cầu trên tổng thể tích máu toàn phần.”

Hình 28.3: Minh họa chi tiết các thành phần của máu

Người ta cũng thấy rằng có một lớp nhầy chứa bạch cầu (leukocytes) và tiểu cầu (platelets) ở nơi phân cách hồng cầu và huyết tương, lớp này kém đặc hơn hồng cầu và chỉ chiếm khoảng 1% thể tích.

Máu đóng vai trò là trung gian vận chuyển O2, CO2, các chất chuyển hóa, hormones và các chất khác sinh ra từ hoạt động sống của tế bào đi khắp cơ thể. Ví dụ: O2 vận chuyển đa phần dưới dạng kết hợp với hemoglobin (Hb) trong hồng cầu, còn CO2 được vận chuyển chủ yếu ở dạng HCO3– (70%). Ngoài ra, máu còn giúp điều hòa thân nhiệt, duy trì pH và áp suất thẩm thấu nội môi.

Hình 28.4: Thành phần O2 trong các loại mạch máu khác nhau

Hồng cầu

Hình 28.5:Kích thước phỏng định của tế bào hồng cầu

Những tế bào dòng hồng cầu (erythroid lineage) phát triển từ tế bào gốc tủy xương đa năng (multipotential myeloid stem cell) dưới sự điều hòa của erythropoietin – một glycoprotein hormone được tổng hợp tại thận.

Hình 28.6: Chức năng của Erythropoietin đối với tế bào máu.

Quá trình tổng hợp hồng cầu được hoạt hóa khi cơ thể rơi vào tình trạng suy giảm oxy, cụ thể như trong tình trạng thiếu oxy máu (hypoxia) do thiếu oxy trong khí thở hay là sự suy giảm số lượng và chất lượng hồng cầu trong hệ tuần hoàn,…

Hình 28.7: Thành phần các ion trong máu (Color atlas of physiology 5th)

Tế bào gốc hồng cầu nhạy cảm với erythropoietin (erythropoietin-sensitive erythrocyte progenitor cell) CFU-E (erythroid colony forming unit) có khả năng biệt hóa thành tiền nguyên hồng cầu (proerythroblast).Các giai đoạn biệt hóa tiếp theo là basophilic, polychromatophilic, orthochromatophilic erythroblast và giai đoạn tế bào lưới (reticulocyte) – lúc này hồng cầu có khả năng rời khỏi tủy xương để vào hệ tuần hoàn.

Sự tạo hồng cầu (erythropoiesis) kéo dài khoảng 4-6 ngày. Nồng độ Hb trong bào tương tăng lên trong suốt quá trình phát triển, còn nhân tế bào và các bào quan khác mất đi bởi quá trình biệt hóa tế bào có chương trình (programmed cell changes) xảy ra cùng lúc.

Hình 28.8: Cấu trúc cơ bản của Hemoglobin

Hình 28.9: Quá trình điều hòa sự tạo hồng cầu và chu kì sống của nó (Color atlas of physiology 5th)

Tiểu cầu (Thrombocytes)

Tiểu cầu (blood platelets) là các mảnh bào tương của những tế bào tủy xương khổng lồ (bone marrow megakaryocytes), nó không có hình dạng cố định và chịu sự điều hòa của thrombopoietin. Sau khi được phóng thích vào máu, tiểu cầu di chuyển trong hệ tuần hoàn trong khoảng 10 ngày.

Màng bào tương tiểu cầu tích điện âm rất mạch và lõm vào tạo hệ ống nội bào (hệ ống hở). Vùng giữa tiểu cầu là vùng hạt chứa ti thể, lưới nội bào hạt, bộ Golgi và các hạt khác. Vùng ngoại vi tiểu cầu là vùng trong suốt, có các siêu ống và siêu sợi điều hòa hình dạng và sự di chuyển tiểu cầu. Bề mặt tiểu cầu có thụ thể Gb-1b và yếu tố von Willebrand. Cần lưu ý rằng thể động đặc có nhiều hạt Ca2+, serotonin, adrenaline, ATP và ADP (quan trọng trong khả năng bám dính của tiểu cầu).

Tiểu cầu có vai trò quan trọng trong cơ chế cầm máu, cụ thể như trong quá trình hình thành cục máu đông (blood clot formation), sự co cục máu đông (clot retraction) và tái tạo mô thương tổn.

Giảm tiểu cầu

Tiểu cầu trong máu tuần hoàn chiếm tỉ lệ khoảng 300.000/ml. Tiểu cầu hình thành cục máu đông và ngăn chặn mất máu sau thương tổn mạch máu. Giảm số lượng tiểu cầu làm dễ chảy máu. Giảm tiểu cầu là khi lượng tiểu cầu trong máu có số lượng ít hơn 150.000/ml. Lưu ý, xuất huyết tự nhiên xảy ra khi tiểu cầu dưới 20.000/ml.

Giảm tiểu cầu do giảm tạo và tăng hủy tiểu cầu, do thuốc(penicillin, sulfamide, digoxin,…) và do tăng kết tụ tiểu cầu ở mao mạch (ban xuất huyết do huyết tắc tiểu cầu) hay do rối loạn quá trình tạo các chất đông máu ở  tế bào nội mô thành mạch.

Hình 28.10: Các bước thành lập cục máu đông (Color atlas of physiology 5th)

Thiếu phức hợp glycoprotein1b-yếu tố đông máu IX(hay yếu tố von Willebrand, protein kèm theo yếu tố VIII) dẫn đến 2 bệnh chảy máu bẩm sinh là Bernard-Soulier và von Willebrand. Hai bệnh này có đặc điểm là tiểu cầu không thể bám vào mặt dưới nội mô thành mạch.

Hội chứng tiểu cầu Gray di truyền trội nhiễm sắc thể  thường là bệnh giảm tiểu cầu có tiểu cầu to do thiếu hạt α.

Bệnh MYH-9 (myosin heavy chain 9-related disorder) cũng có giảm tiểu cầu với tiểu cầu to, do khiếm khuyết gen MYH-9 mã hóa myosin IIA(myosin không quy ước) ở tiểu cầu và bạch cầu trung tính, dẫn đến khiếm khuyết tạo tiểu cầu ở khâu cắt nhỏ tạo tiểu cầu.

Cầm máu và tạo cục máu đông

Hình 28.11: Minh họa quá trình tương tác giữa các yếu tố đông máu

Quy trình tạo cục máu đông phụ thuộc vào sự chuyển đổi các tiền enzyme thành enzyme, có vai trò của tế bào nội mô và tiểu cầu để làm ngừng chảy máu. Cầm máu hình thành khi có fibrin cố định tạo nên nút tiểu cầu.

Quy trình cầm máu có đặc điểm:

–          Phụ thuộc sự chuyển đổi các tiền protease bất hoạt ( thí dụ yếu tố XIIa).

–          Gồm quá trình đông máu nội sinh và đông máu ngoại sinh.

–          Quá trình đông máu nội sinh và quá trình đông máu ngoại sinh hợp lại thành lộ trình đông máu chung.

–          Quá trình đông máu ngoại sinh xảy ra khi có tổn thương tế bào nội mô thành mạch, giải phóng các yếu tố mô.

–          Quá trinh đông máu nội sinh xảy ra khi có rối loạn các thành phân của máu hoặc tổn thương thành mạch máu, khi yếu tố XII tiếp xúc với collagen bên dưới tế bào nội mô(tiếp xúc này xảy ra khi có tổn thương thành mạch).

Đông máu nội sinh và đông máu ngoại sinh chuyển đổi fibrinogen thành fibrin, tạo khung lưới để tiểu cầu bám vào. Quy trình khởi đầu bằng hoạt hóa yếu tố X thành yếu tố Xa và yếu tố Va hoạt hóa, cắt prothrombin  thành thrombin, chuyển đổi fibrinogen thành fibrin.

Fibrinogen, sản phẩm tế bào gan , có 3 sợi polypeptide giàu acid amin mang điện tích âm ở đầu amin. Thuộc tính này cho phép fibrinogen tan trong huyết tương. Sau cắt, fibrin mới tạo kết tụ thành lưới. fibrin và fibronectin huyết tương giúp ổn định cục máu đông.

Giai đoạn sau đông máu

–          Sự co cục máu: Retractozyme làm các sợi huyết co lại, huyết thanh thoát ra làm thể tích cục máu đông giảm dần. Quá trình này giúp cho thành mạch bị tổn thương được kéo lại gần nhau, ngăn cản sự chảy máu.

–          Sự tan máu đông: Fibrin phân ly dưới tác dụng của plasmin sẽ dọn sạch các cục máu đông, ngăn ngừa hình thành huyết khối gây tắc mạch. Fibrin được tạo từ fibrinogen dưới tác dụng xúc tác của thrombin, yếu tố XII hoạt hóa, enzyme từ lysosome vùng tổn thương và các yếu tố nội mô thành mạch bài tiết. Ngoài ra còn liên quan đến urokinase (urokinase-type Plasminogen Activator (uPA), một loại enzyme dùng làm thuốc được) của tổ chức thận và streptokinase.

Bạch cầu

Các bạch cầu có số lượng 6-10×103/mm3, gồm 2 loại:

–          Bạch cầu hạt (có hạt cấp I và hạt cấp II)

–          Bạch cầu không hạt (chỉ có hạt cấp I). Khi có kích thích , các bạch cầu rời máu tuần hoàn, đi vào mô liên kết , gọi là sự định cư bạch cầu.

Bạch cầu hạt

Bạch cầu đa nhân trung tính

Bạch cầu đa nhân trung tính chiếm số lượng lớn nhất trong các loại bạch cầu (65%).Là tế bào có nhân nhiều thùy, bào tương có và hạt cấp I và hạt cấp II (các loại hạt chuyên biệt). Nó còn được gọi là bạch cầu trung tính (neutrophilic granulocyte) hoặc bạch cầu đa hình (polymorphs). Loại bạch cầu nàycó đời sống trung bình 6-7 giờ. Một điểm cần lưu ý là ở mô liên kết, loại bạch cầu này có đời sống khoảng 4 ngày.

Bạch cầu đa nhân trung tính có khả năng di động bằng 2 cách:

–          Tương tác với tế bào nội mô tqua các tiểu tĩnh mach sau mao mạch (postcapillary venules – homing – định cư bạch cầu).

–          Bám vào dịch ngoại bào và các phân tử hóa ứng động. (chemoattractant molecules)

Do vậy, bạch cầu đa nhân trung tính có thể rời khỏi hệ tuần hoàn để đến thực hiện chức năng tại các vùng khác. Với vai trò là tế bào có tác động đầu tiên khi cơ thể bị nhiễm trùng, chúng tiêu hủy các vật thể và vi khuẩn đã bị opsonin hóathông qua thụ thể Fc trên màng tế bàohay có tác động làm hạn chế lan rộng phản ứng viêm.

Các enzyme ở hạt cấp I (elastase và myeloperoxidase) và hạt cấp II (lysozuyme và các protease khác), các thụ thể của C5a (tạo lập trong lộ tình bổ thể), L-selectin và các integrin (gắn vào các phần tử nối ở tế bào nội mô là ICAM-1 và ICAM-2) phối hợp giúp bạch cầu trung tính tiêu diệt vi khuẩn và định cư.

Bạch cầu ưa acid (Eosinophilic granulocyte)

Bạch cầu ưa acid chiếm từ 2-4% tổng số tế bào bạch cầu, nhân có 2 thùy, tìm thấy nhiều trong trong niêm mạc ruột non. Số lượng có thể tăng lên trong trường hợp bị nhiễm kí sinh trùng hoặc đang có phản ứng dị ứng. Ngoài ra còn có vai trò trong khởi phát bệnh suyễn. Bạch cầu ưa acid có khả năng thực hiện các đáp ứng miễn dịch và có vai trò quan trọng trong việc bảo vệ cơ thể chống lại giun sán (helminthic parasites). Giống như bạch cầu đa nhân trung tính, bạch cầu ưa acid cũng có khả năng rời khỏi hệ tuần hoàn và di chuyển đến mô liên kết có vật lạ xâm nhập.

Bạch cầu ưa base

Bạch cầu ưa base chỉ chiếm tỉ lể 1% tổng số bạch cầu trong hệ tuần hoàn. nhân 2 thùy. Loại bạch cầu này có thể rời máu đi vào mô liên kết để thành mastocyte. Bạch cầu ưa base có vai trò phản ứng nhanh (gặp trong bệnh suyễn), phản ứng muộn (gặp trong trường hợp dị ứng da) và có khả năng gây phản ứng tự miễn.

Bạch cầu không hạt

Monocyte

Monocyte là bạch cầu lớn nhất trong các loại bạch cầu (12-20µm) và chiếm từ 2-8% tổng lượng bạch cầu trong máu và chỉ có hạt cấp I.Monocyte chỉ ở trong hệ tuần hoàn khoảng 24 giờ. Sau đó, chúng biệt hóa thành đại thực bào và tồn tại ở nhiều nơi như trong phế nang, tế bào Kupffer, mô liên kết, microglial và tủy đỏ của lách.

Ở mô liên kết, monocyte biệt hóa thành đại thực bào có chức năng thực bào vi khuẩn, tình diên kháng nguyên và tiêu hủy thể vùi tế bào chết. Ở mô xương, monocyte biệt hóa thành hủy cốt bào.

Monocyte đóng vai trò hết sức quan trọng trong vòng sinh lý tạo lập các mô, bao gồm sự phá hủy thành phần của dịch ngoại bào và các sợi mô liên kết già cũng như là tế bào quan trọng trong các đáp ứng miễn dịch đặc hiệu hay không đặc hiệu của hệ miễn dịch. Chúng bị hấp dẫn bởi vi khuẩn, biệt hóa thành đại thực bào tại các vùng đang có phản ứng viêm, các mô đang xảy ra hiện tượng tái cấu trúc do bệnh lý.

Monocyte cũng phát triển tạo thành những tế bào trình diện kháng nguyên (antigen-presenting cells) có vai trò phá hủy kháng nguyên và ngoài ra, chúng còn hiện diện trong các mảnh liên kết với các phân tử Major Histocompatibility II trên màng tế bào của lymphocyte TH CD4. (helper CD4 T lymphocytes)

Lymphocyte

Lymphocyte là những tế bào miễn dịch của hệ bạch huyết và hệ miễn dịch, có khả năng nhận diện và đáp ứng với kháng nguyên. Chúng có thể sống từ vài ngày đến vài năm.

Lymphocyte chiếm khoảng 30% tổng số lượng bạch cầu của cơ thể. Trong máu và bạch huyết, chúng có thể tái tuần hoàn giữa các mô bạch huyết khác nhau. Mặc dù hình thái của chúng rất giống nhau nhưng những nghiên cứu sâu về lymphocytes cho thấy một số lượng lớn các tập hợp dân số không đồng nhất (heterogenous population) các tế bào về nguồn gốc, nơi biệt hóa, các marker bề mặt, chức năng chuyên biệt, sự định cư (localisation) trong các mô bạch huyết và thời gian sống (life span). Nếu phân loại theo chức năng thì trong cơ thể người có 3 loại lymphocytes:

–          Tế bào T (T lymphocyte hay T cell) được biệt hóa tại tuyến ức (Thymus). Lymphocyte T thực hiện chức năng miễn dịch qua trung gian tế bào. Chúng được phân loại dựa vào sự hiện diện của protein CD4 hay CD8, cách nhận diện kháng nguyên theo đó bám vào phức hợp Major Histocompatibility (MHC) I hay II. Lymphocyte TH(CD4) đóng vai trò trung tâm trong đáp ứng sinh ra một đáp ứng miễn dịch với kháng nguyên lạ. Chúng được hoạt hóa khi thụ thể của nó gắn kết với phức hợp kháng nguyên-MHC II trên bề mặt của tế bào trình diện kháng nguyên, hệ quả là dẫn đến sự tăng trưởng và biệt hóa của nhiều tế bào T và NK hơn, đồng thời cũng kích thích biệt hóa tế bào B tạo và phóng thích kháng thể. Tế bào CD8 là tế bào tác hiệu sơ cấp, được kích thích khi thụ thể của nó gắn với phức hợp kháng nguyên – MHC I trên bề mặt virus hay tế bào hình thành khối u (neoplastic cell), sau đó tiết ra perforins để hình thành các kênh ion trên màng của tế bào đã bị biến đổi (transform) rồi gây tiêu hủy chúng.

–          Tế bào B (B cell) thực hiện chức năng miễn dịch qua trung gian kháng thể – dịch thể (antibody-mediated humoral immunity). Tế bào B trưởng thành có phân tử MHC II và kháng thể trên bề mặt của nó và sau khi được hoạt hóa, nó sẽ biến đổi để tạo thành tế bào tiết kháng thể dịch thể hay còn gọi là tương bào (antibody-secreting plasma cells).

–          NK cell (natural killer cell) có khả năng tiêu diệt các tế bào bị nhiễm virus và một vài loại tế bào ung thư, nhưng hoạt động của chúng không phụ thuộc vào sự hoạt hóa của kháng nguyên.

Lymphocyte lưu thông trong máu chủ yếu dưới dạng tế bào T trưởng thành, chiếm khoảng 60-80% tổng lượng lymphocyte. 20-30% là tế bào B trưởng thành. Xấp xỉ 5-10% tế bào được xác định là lymphocyte không phải là tế bào B hay T mà là tế bào NK hay hiếm gặp hơn là tế bào gốc tạo máu (circulating haemopoietic stem cells).

Định cư bạch cầu ở phản ứng viêm

Định cư bạch cầu (homing) là cách thức bạch cầu trung tính di cư đến vùng viêm.

Bước một, các phần tử nối carbohydrate ở bề mặt bạch cầu trung tính gắn vào selectin ở tế bào nội mô(E selectin), giúp bạch cầu trung tính lăn tròn trên tế bào nội mô.

Bước hai, các integrin LFA-1 (lymphocyte associated antigen 1) và Mac-1 (macrophage 1) ở bạch cầu trung tính tương tác với các ICAM-1 và ICAM-2  ở bề mặt tế bào nội mô. ICAM-1  biểu hiên khi chịu cảm ứng bởi cytokine yếu tố hoại tử u α  và interleukine-1 (IL-1) của đại thực bào hoạt hóa tại vùng viêm.

Tương tác các phân tử này tạo ra: (1) kết dính chặt chẽ bạch cầu trung tính, chấm dứt sụ lăn tròn ; (2) ép tế bào bạch cầu vào giữa các tế bào nội mô kế nhau về vùng có interleukine-8 (sản phẩm của tế bào viêm);(3) di chuyển xuyên mạch, có sự hỗ trợ của CD-31 trên bề mặt bạch cầu trung tính và tế bào nội mô.

Vai trò của sự định cư bạch cầu (homing)

Các protein kết dính tế bào có vai trò quan trọng trong các phản ưng miễn dịch, sự lành vết thương, quá trình di căn tế bào ung thư và kể cả tạo mô. Một trong số các sự kiện quan trọng trong quá trình viêm – dị ứng là thu hút các tế bào viêm di cư đến vùng có phản ứng dị ứng. Nói chung, để có thể di cư thì các phân tử kết dính ở tế bào di cư phải gắn vào các phần tử nối ở bề mặt các tế bào khác.

–          Bệnh thiếu phân tử kết dính bạch cầu I do thiếu tiểu đơn vị integrin β làm các bạch cầu  không thể xuyên mạch rời máu tuần hoàn đến vùng viêm. Ở các người này,vùng viêm không có bạch cầu trung tính.

–          Bệnh thiếu phân tử kết dính bạch cầu II, thiếu phần tử nối có đường fucose (không lầm với fructose) chuyên biệt gắn kết selectin do rối loạn chuyển hóa fucose bẩm sinh. Tương tác selectin với hai loại bệnh khiếm khuyết phân tử kết dính đã được ghi nhận, cả 2 đều dẫn đến hệ quả là chậm và kém lành thương, nhiễm trùng tái diễn và tăng bạch cầu trong máu.

Đọc toàn bộ bài viết tại đây.

GIỚI THIỆU VỀ MÔ MỠ

Phùng Trung Hùng – Nguyễn Phước Long – Nguyễn Thị Huyền Trang

Mô mỡ không chỉ đơn thuần là một cơ quan được thiết kế để dự trữ thụ động carbon dư thừa dưới dạng các acid béo glycerol ester (triacylglycerol). Những tế bào mỡ trưởng thành tổng hợp và tiết ra một số enzyme, các yếu tố tăng trưởng (growth factors), các cytokine và hormone có liên quan đến tổng cân bằng năng lượng nội môi. Nhiều yếu tố ảnh hưởng đến sự tạo mỡ (adipogenesis) cũng liên quan đến các quá trình khác như cân bằng lipid nội môi và điều hòa phản ứng viêm. Ngoài ra, một lượng protein được tiết ra từ tế bào mỡ đóng vai trò quan trọng trong những quá trình tương tự. Thật vậy, những bằng chứng gần đây đã chứng minh rằng nhiều yếu tố được tiết ra từ tế bào mỡ là tiền chất trung gian của phản ứng viêm (pro-inflamlatory mediators) và những protein này được gọi là adipocytokines hay adipokines. Hiện có trên 50 adipokines khác nhau được  tiết ra từ mô mỡ. Những adipokines này liên quan đến sự điều khiển hàng loạt các phản ứng sinh lý bao gồm kiểm soát việc thèm ăn và cân bằng năng lượng. Quá trình trao đổi chất đặc biệt của mô mỡ bao gồm trao đổi lipid, cân bằng glucose nội môi , viêm nhiễm, hình thành mạch, cầm máu (theo quy định của đông máu) và huyết áp.

Hình 29.1: Tế bào mỡ và tình trạng bệnh lý

Dạng chủ yếu của mô mỡ ở động vật có vú (thường gọi là “mỡ”) là mỡ trắng, WAT (white adipose tissues). Mô mỡ biệt hóa có nhiệm vụ sinh nhiệt (thermogenesis), đặc biệt ở trẻ sơ sinh, là mỡ nâu, BAT (brown adipose tissues). BAT  được gọi như thế vì có màu đậm do mật độ ty thể cao trong cytochromes. BAT chuyên sản xuất nhiệt và oxy hóa lipid. WAT bao gồm các tế bào mỡ liên kết lỏng lẻo với nhau tập trung nhiều mạch máu vàcác dây thần kinh. Ngoài ra, WAT chứa các đại thực bào, bạch cầu, nguyên bào sợi, tế bào mầm của mô mỡ  (adipocyte progenitor cells), và tế bào nội mô. Các nguyên bào sợi, các đại thực bào, bạch cầu hiện diện cùng với các tế bào mỡ, có rất nhiều loại protein được tiết ra từ WAT trong các điều kiện khác nhau. Nơi tích lũy WAT cao nhất ​​là các vùng dưới da của cơ thể, xung quanh các nội tạng (nội tạng của ngực và bụng).

Hình 29.2: Sự hình thành mô mỡ

WAT có thể được tìm thấy ở một số cơ quan, nó không chỉ có vai tròcách nhiệt mà còn là một kho dự trữ để sản xuất năng lượng mà còn có nhiều chức năng khác. Tùy thuộc vào vị trí của nó, WAT có chức năng chuyên biệt. WAT ở các cơ quan bụng và ngực (không bao gồm tim), gọi là mỡ nội tạng, tiết cytokine viêm và do đó liên quan đến các quá trình viêm khu trú và viêm hệ thống. WAT ở cơ xương tiết ra acid béo tự do, interleukin-6 (IL-6) và yếu tố hoại tửu-α (tumor necrosis factor-α)(TNFα), đóng vai trò quan trọng trong sự đề kháng insulin.WAT ở mô tim tiết nhiều cytokine trong các phản ứng viêm khu trú và hóa hướng viêm, điều này có thể phát triển xơ vữa động mạch và tăng huyết áp tâm thu. WAT ở thận đóng vai trò trong việc tái hấp thu natri và do đó có thể ảnh hưởng đến thể tích máu nội mạch và cao huyết áp.

Trọng tâm chính của bài viết này tập trung vào các hoạt động sinh học liên quan đến WAT, tuy nhiên, BAT cũng sẽ được đề cập. WAT có nhiều chức năng bao gồm cách nhiệt, dự trữ năng lượng carbon dư thừa dưới dạng triacylglycerol và là trung gian cân bằng glucose nội môi. WAT cũng đóng vai trò quan trọng như một cơ quan nội tiết/miễn dịch bằng cách tiết adipokines như các cytokine viêm, yếu tố bổ trợ, chemokine, và protein giai đoạn cấp tính. Chức năng nội tiết của WAT ​​điều khiển sự thèm ăn, chuyển hóa năng lượng, chuyển hóa glucose và lipid, quá trình viêm, hình thành mạch, và các chức năng sinh sản.

Hình 29.3: Cơ chế dự trữ và huy động lipid của tế bào mỡ. Triglycerides được vận chuyển trong máu và bạch huyết từ ruột non về gan nhờ chylomicrons và VLDLs. Ở tế bào nội mô mao mạch của mô mỡ, các phức hợp lipoprotein trên sẽ được phân hủy bởi tác dụng của lipoprotein lipase, giải phóng acid béo và glycerol. Acid béo tự do khuếch tán từ mao mạch vào tế bào mỡ. Sau đó, acid béo sẽ được gắn trở lại vào glycerol phosphate để tạo thành triglyceride. Norepinephrine từ đầu tận của dây thần kinh sẽ hoạt hóa hệ thống tín hiệu cAMP (thụ thể β3) và hoạt hóa lipase nhạy cảm hormone để thủy phân các triglyceride dự trữ trở lại thành acid béo và glycerol. Các phân tử này sẽ khuếch tán trở lại vào mao mạch và tại đó, acid béo tự do sẽ gắn kết với albumin để chuyển tới các vị trí cần sử dụng năng lượng.

Điều hoà sự tạo mỡ

Các quá trình biệt hoá tế bào mỡ từ các tiền tế bào (precursor preadipocyte) thành tế bào mỡ hoàn toàn trưởng thành là một loạt các trật tự chính xác các sự kiện sắp xảy ra. Các tiền tế bào mỡ xuất hiện từ tế bào gốc trung mô (MSCs) có nguồn gốc từ lớp trung bì của phôi thai. MSCs toàn năng (pluripotent) nhận được tín hiệu ngoại bào dẫn đến các thông tin chắc chắn đối với dòng preadipocyte. Những tiền tế bào mỡ không được phân biệt về mặt hình thái từ các MSCs tiền thân của chúng, nhưng chúng đã mất khả năng biệt hóa thành các loại tế bào khác. Sự biệt hoá hay sự xác định các tế bào mỡlà bước đầu tiên và dẫn đến sự tăng về số lượng nhưng ngừng tăng trưởng các tiền tế bào mỡ. Sự ngừng tăng trưởng ban đầu xảy ra trùng khớp với các biểu hiện của hai nhân tố sao chép chính, CCAAT / protein liên kết tăng cường α (C/EBPα) và thụ thể kích hoạt peroxisome proliferator-γ (Peroxisome proliferator-activated receptor,PPARγ). Kế tiếp sự cảm ứng của hai yếu tố phiên mã quan trọng đó là giai đoạn ngừng tăng trưởng, tiếp theo là biểu hiện của kiểu hình biệt hoá hoàn toàn tế bào mỡ. Giai đoạn sau của sự  tạo mỡ này là sự biệt hoá cuối cùng.

Mặc dù PPARγ và C / EBPα là những yếu tố quan trọng nhất điều hoà sự tạo mỡnhưng  yếu tố phiên mã bổ sung khác cũng được biết là có ảnh hưởng đến quá trình này. Những yếu tố bổ sung này bao gồm sterol-regulated element binding protein 1c (SREBP1c, còn được gọi là ADD1 for adipocyte differentiation -1), đầu dò tín hiệu,chất kích hoạt phiên mã 5 (STAT5), AP-1 và các thành phần giống như yếu tố Krüppel (Krüppel-like factor) (Klf4, KLF5, KLF15), C / EBPβ và C / EBPδ.  Mặc dù những yếu tố phiên mã này đã được chứng minh ảnh hưởng đến sự tạo mỡ, cách tích cực hay tiêu cực, PPARγ là yếu tố duy nhất cần thiết cho sự tạo mỡ diễn ra. Trong thực tế, nếu vắng mặt của PPARγ thì sự biệt hoá tế bào mỡ khôngxảy ra và không có yếu tố nào xác định có thể thay thế sự tạo mỡ trong sự vắng mặt của PPARγ. Mặc dù vậy nhưng PPARγ khôngphải là yếu tốbiểu hiện đầu tiên trong quá trình kích hoạt biệt hoá tế bào mỡ ,nó chỉ xảy ra sau khi đáp ứng bởisự tác dụng của STAT5, Klf4, KLF5, AP-1, SREBP1c, và C / EBPβ và C / EBPδ .

PPARγ ban đầu biểu hiện trong sự biệt hoá tế bào mỡ và bây giờ công nhận là hệ thống điều chỉnh sự tạo mỡ tổng thể. PPARγ được xác định là mục tiêu của các thiazolidinedione (TZD) lớp thuốc nhạy cảm insulin. Cơ chế hoạt động của các TZDs là kích hoạt các PPARγ và khởi phát chuyển kết quả cho các gen cần thiết cho sự biệt hoá tế bào mỡ. Gen PPARγ của người (biểu tượng PPARG) nằm trên nhiễm sắc thể 3p25 kéo dài hơn 100kb và bao gồm 9 exon mã hóa hai đồng dạng sinh học hoạt động như mRNA thay thế và sử dụng như một codon bắt đầu quá trình dịch mã. Các sản phẩm protein chủ yếu của gen PPARG được xác định là PPARγ1 và PPARγ2. PPARγ1 mã hóa bởi exon A1 và A2 exon chung từ 1 đến 6. PPARγ2mã hóa bởi exon B và exon chung từ 1 đến 6. PPARγ2 hầu như đặc biệt dành riêng cho các tế bào mỡ. Giống như tất cả các thụ thểnhân,các protein PPARγ chứa một DBD và LBD. Ngoài ra, như PPARα, các protein PPARγ chứa ligand-dependent activation function domain (được xác định là AF-2) và ligand-independent activation function domain (được xác định là AF-1). Vùng AF-2 nằm trong LBD và vùng AF-1 ở khu vực N-terminal của protein PPARγ.PPARγ2 protein chứa 30 acid amin ở N-terminal liên quan đến PPARγ1 và các acid amin bổ sung này tăng 5-6 lần trong quá trìnhkích hoạt sao mã (transcription-stimulating activity) của AF-1 khi so sánh với vùng tương tự trong protein PPARγ1. PPARγ1 hiện diện ở khắp nơi. PPARγ2 gần như dành riêng cho  mỡ trắng (WAT), liên quan đến dự trữ lipid và mỡ nâu (BAT), liên quan đến tiêu hao năng lượng.

Hình 29.4:  Minh họa một số quá trình tạo thành mô mỡ

Như đã nói ở trên, trong quá trình biệt hoá tế bào mỡ một số gen ngược dòng (upstream genes)  được yêu cầu để kích hoạt các gen PPARG. Chúng bao gồm C / EBPβ và C / EBPδ, SREBP-1c, KLF5, KLF15, proteinzinc-finger 423 (Zfp423), và các yếu tố tế bào B sớm (early B-cell factor)  (Ebf1). PPARγ kích hoạt hầu hết các gen cần thiết cho quá trình biệt hoá tế bào mỡ. Những gen này bao gồm aP2-cần thiết để vận chuyển các acid béo tự do (FFAs) và perilipin-một loại protein bao phủ bề mặt của các giọt lipid trưởng thành trong tế bào mỡ. Các gen quy định cho PPARγ có liên quan đến chuyển hóa lipid hay cân bằng glucose nội môi bao gồm lipoprotein lipase (LPL), acyl-CoA synthase (ACS), acetyl-CoA acetyltransferase (ACAT), vài gen phospholipase A  (PLA) , adiponectin, enzyme gluconeogenic PEPCK, và glycerol-3 phosphate dehydrogenase (GPDH). PPARγ cũng có chức năng trong quá trình chuyển hóa lipid ở đại thực bào bằng cách gây ra sự biểu hiện của các macrophage scavenger receptor, CD36. Thụ thể CD36 cũng được gọi là translocase acid béo (FAT) và nó là một trong các thụ thể chịu trách nhiệm cho sự hấp thu các acid béo của tế bào.

Vai trò của SREBP-1c trong việc kích thích sự biệt hoá tế bào mỡ được cho là kết quả của yếu tố phiên mã này bắt đầu biểu hiện của gen đó, như là một phần hoạt động của mình, tạo ra các chất gắn PPARγ. Thực tế, sự biểu hiện của SREBP trước PPARγ là cần thiết. Mặc dù vậy, người ta chứng minh rằng những con chuột thiếu SREBP-1 không cho thấy việc giảm đáng kể WAT. Tuy nhiên, mức SREBP-2 tăng lên ở những động vật chỉ ra rằng điều này có thể là một cơ chế đền bù. Mặc dù mất SREBP-1 không dẫn đến một mức  thiếu hụt đáng kể trong phát triển mô mỡ, sự biểu hiện quá mức của SREBP-1c tăng cường hoạt động adipogenic của PPARγ.

Các yếu tố phiên mã họ C/EBP đóng vai trò đầu tiên trong sự biệt hoá tế bào mỡ. Ba thành viên của họ (C / EBPα, C / EBPβ và C / EBPδ) được bảo tồn các yếu tố leucine-cơ bản nơi chứa các yếu tố phiên mã. Tầm quan trọng của các yếu tố này trong sự tạo mỡ đã được chứng minh trong các con chuột biến đổi gen. Ví dụ như toàn bộ cơ thể gián đoạn sự biểu hiện của C / EBPα trong toàn bộ cơ thể bị gián đoạn dẫn đến cái chết ngay sau khi sinh do khiếm khuyết gan, hạ đường huyết, và không tích luỹ WAT ​​hoặc BAT. Sử dụng chuột biến đổi gen, người ta xác định vai trò của C / EBPβ và C / EBPδ tác dụng sớm trong quá trình biệt hoá tế bào mỡtrong khi C / EBPα tác dụng sau. Trong thực tế,  C / EBPα biểu hiện trễ hơn trong sự tạo mỡ và phong phú nhất trong các tế bào mỡ trưởng thành. Biểu hiện của  C / EBPα và PPARγ một phần được điều hoà bởi nhữnghoạt động của C / EBPβ và C / EBPδ. Một trong những tác động chủ yếu của sự biểu hiện C / EBPα trong tế bào mỡ là tăng cường độ nhạy cảm insulin của các mô mỡ. Thực tế này sau đó được chứng minh rằng biến đổi gen C / EBPα không phá huỷ sự tạo mỡ nhưng WAT không nhạy cảm với các hoạt động của insulin.

Mô hình chung của yếu tố phiên mã hoạt hoá sự tạo mỡ cho thấy rằng AP-1, STAT5, Klf4, và KLF5 được kích hoạt sớm và dẫn đếnviệc tăng sự biểu hiện gen trung gian qua phiên mã (transactivation) của C / EBPβ và C / EBPδ. Hai yếu tố này lần lượt hoạt hoá sự biểu hiện của SREPB-1 và KLF15 dẫn đến hoạt hoá PPARγ và C / EBPα. Điều quan trọng là phải giữ quan điểm rằng nó không chỉ là yếu tố sao chép kích hoạt các tiền tế bào mỡ điều khiển sự tạo mỡ. Ngoài ra còn có một sự cân bằng tác dụng ở mức độ ức chế yếu tố sao chép trung gian của sự tạo mỡ. Một số trong những yếu tố đang chống tạo mỡ (anti-adipogeneic) bao gồm các thành viên của họ yếu tố giống Krüppel (Krüppel-like factor family) như, KLF2 và KLF3.GATA2 và GATA3 cũng tác động chống tạo mỡ. Gọi là yếu tố GATA bởi vì chúng kết hợp các phân tử DNA có chứa một chuỗi GATA cốt lõi. Hai yếu tố sao chép của họ yếu tố điều hoà interferon, IRF3 và IRF4, chống lại quá trình tạo mỡ.

Những thay đổi trong biểu hiện của các yếu tố phiên mã điều khiển quá trình tạo mỡ tổng thể liên quan với những thay đổi trong động lực học nhiễm sắc. Những thay đổi trong động lực học nhiễm sắc liên quan đến việcmethyl hóa protein histone và methyl hóa DNA. Nhiễm sắc thể trong tế bào gốc đa năng hiển thị một tính chất rất năng động với một mức độ cao của DNA linh động “DNA decondensed”. Sự biệt hoá được cảm ứng là do có sự thay đổi trong mô hình tổng thể của gen methyl hóa. Các gen Lineage chuyên biệt được demethylated trong khi các gen đa năng bị methyl hóa dẫn đến kích hoạt phiên mã và im lặng tương ứng. Khi quá trình biệt hoá mỡ tiến hành mã hóa gen PPARγ và C / EBPα được quan sát thay đổi vị trí vào bên trong hạt nhân trùng với tỷ lệ tăng phiên mã. Kể từ khi MSCs có thể được cảm ứng để biệt hóa thành xương và cơ bắp, cũng nhưmỡ,các gen biệt hoá mỡ như PPARγ và C / EBPα không cần thiết biểu hiện  nếu con đường gây ra là xương hay cơ bắp.

Liên quan với không biểu hiện phiên mã là phức hợp protein gọi là đồng kìm hãm (co-repressors) và phức hợp kích hoạt phiên mã được gọi là đồng-kích hoạt (co-activators). Khi MSCs là do xương dòng  protein histone3 trong khu vực promoter PPARγ là methyl hóa lysine 9 (xác định là H3K9) bởi một phức tạp đồng kìm hãm bao gồm SETDB1 histone methyltransferase và các protein liên quan NLK (Nemo-kinase) và CHD7 (chromodomain helicase DNA gắn protein-7). Ngoài việc không biểu hiện của các promoter PPARg, hoạt động của protein PPARγ về gen đích của nó cũng bị hạn chế bởi liên kết với các phức hợp đồng kìm hãm. Trongtiền tế bào mỡ, hoạt động của PPARγ được ngăn chặn bởi liên kết với PRB và HDAC3 (histone deacetylase 3). Sự cảm ứng của quá trình biệt hoá kéo theo phản ứng phosphoryl hóa PRB giải phóng từ phức hợp ức chế. Điều này dẫn đếntăng hoạt động acetyltransferases histone (HATs) và đồng hoạt hóa protein CBP/p300 (CBP CREB gắn protein, CREB là cAMP- response element-binding protein) đến phức hợp PPARγ kết quả làhoạt hoá phiên mãgen mục tiêu PPARγ.

Nhiều thí nghiệm đã bắt đầu xác định các mảng lớn của việc sửa đổi histone điều hoà sự biểu hiện của gen liên quan đến tổng thể sự tạo mỡ đặc biệt là biểu hiện của PPARγ. Những thay đổi phức histone bao gồm HATs, HDACs, methyltransferases histone (HMTs), và demethylases histone (HDMs). Hậu quả chung sự hoạt hóa của HATs và HMTs là kích hoạt PPARγ biểu hiện và / hoặc tăng cường các hoạt động PPARγ trong chất hoạt hoá gen mục tiêu của nó. Ngược lại, như mong đợi, hoạt hoá HDAC dẫn đến ức chế hoạt động PPARγ tại chất ức chế gen mục tiêu  của nó.

Điều hoà trao đổi lipid trong tế bào mỡ

Các triacylglycerol (TAG) được tìm thấy trong WAT là nguồn dự trữ năng lượng chính của cơ thể. Vùng chứa TAG là một vùng ổn định được điều hoà bởi lượng thức ăn vào, nhanh và bởi hậu quả của chế độ ăn uống trên mức hormon tuyến tuỵ. Ngoài ra, hồ chứa chất béo của mô mỡ thay đổi là kết quả của biến động hormon khác, quá trình viêm, và sinh lý bệnh. tổng thể quá trình hóa sinh trong  trao đổi chất củaTAG của được trình bày trong trang tổng hợp lipid và trang oxy hóa acid béo. Mục đích của phần này là để thảo luận chi tiết hơn về các hoạt động enzyme điều hoà tổng cân bằng TAG nội môi của mô mỡ cũng như sự điều hoà hormon và các quá trình sinh lý

Ban đầu người ta tin rằng việc giải phóng các acid béo từ nơi dự trữ TAG của mô mỡ được kích hoạt riêng biệt thông qua hoạt hoá hormone nhạy cảm lipase (hormone-sensitive lipase) (HSL). Tuy nhiên, khi HSL-null của chuột được tạo ra người ta đã phát hiện ra rằng quá trình này liên quan đến việc thêm adipocyte HSL-independent TAG lipase. Nghiên cứu sau đó đã dẫn đến việc xác định ít nhất là năm lipases TAG của mô mỡ ngoài HSL ra. HSL là chất xúc tác hoạt động đa dạng bao gồm TAG, diacylglycerols (DAG), và este cholesterol (CES). Khi khảo nghiệm  in vitro hoạt động của HSL ít nhất là 10 lần cao hơn so với DAG hơn TAG. Khi tác động trên TAG hoặc DAG, HSL có hoạt động mạnh nhất chống lại các acid béo có trong vị trí sn-1 hoặc sn-3 của xương sống glycerol. Cho đến khi những thí nghiệm trên chuột biến đổi gen gần đây đã chứng minh rằng, HSL được cho là enzyme cơ bản liên quan đến TAG mỡvà thủy phân DAG cũng như hoạt động chính của  neutral cholesteryl ester hydrolase (NCEH) .

Mặc dù chuột HSL-null vẫn còn biểu hiện hoạt động hydrolase TAG, kết quả từ các nghiên cứu ở những con chuột này cho thấy rằng sự phân giải lipid qua trung gian HSL có đóng góp đáng kể cho tổng thể giải phóng acid béo từ các tế bào mỡ. Ở những con chuột thiếu HSL có thấy giảm mức độ lưu thông acid béo tự do và TAG cũng như giảm lưu trữ TAG trong gan. Những kết quả này chỉ ra rằng nếu thiếu HSL thì sẽ không đủ phân giải lipid từ  mô mỡ để hỗ trợ các nhu cầu năng lượng của tế bào từ các acid béo và cũng không để tổng hợp VLDL đầy đủ trong gan. Kết quả các nghiên cứu về vai trò của HSL trong phân giải lipid tổng thể ở mô mỡ chứng minh rằng nó không hoàn toàn cần thiết cho sự thủy phân TAG như suy nghĩ ban đầu. Tuy nhiên, những con chuột HSL-null có tích luỹ DAG chỉ ra rằng vai trò quan trọng đối với HSL là giải phóng acid béo từ DAG lần lượt tạo ra monoacylglycerols (MAGs). Tỷ lệ giải phóng acid béo từ DAG là khoảng 10 – 30 lần so với tỷ lệ giải phóng từ TAG. Cho đến nay chỉ DAG lipase được xác định trong mô mỡ là HSL.

Đọc toàn bộ bài viết tại đây.

ĐẠI CƯƠNG TĂNG TRƯỞNG TẾ BÀO BẤT THƯỜNG

Phùng Trung Hùng – Nguyễn Phước Long

Tổng quan

Tế bào thường bị phân giải bởi apoptosis hoặc tử hoại (necrosis). Biểu hiện đại thể như sự bong tróc (sloughing) gặp trong tế bào ống tiêu hóa và da; các thương tổn gây chảy máu,… Sự chết và sống xen kẽ nhau, tế bào mới sẽ thay thế tế bào chết cùng mức độ nhờ các cơ chế cân bằng nội môi của cơ thể. Nếu các cơ chế điều hòa tế bào bình thường bị rối loạn, sự phân chia tế bào không kiểm soát sẽ xảy ra, hiện tượng nặng nề nhất là ung thư.

Hình 33.1: Một số hoạt động của protooncogene đã đề cập.

Ta cần biết rằng các protooncogene điều hòa hoặc sản sinh ra protein kiểm soát sự tăng trưởng và phát triển của tế bào. Các đột biến xảy ra khiến protooncogene chuyển thành oncogene (nguyên nhân gây ung thư). Hơn nữa, các đột biến có thể gây mất chức năng các gene có vai trò ức chế gene sinh ung và do vậy cũng góp phần gây ung thư.

Hầu hết mọi thay đổi di truyền xảy ra trong quá sinh ung thư hóa (carcinogenesis) là đột biến bản thể (somatic mutation). Mỗi lần phân bào là mỗi lần đột biến có cơ hội xảy ra, do vậy mà bất kì ai trong chúng ta đều có một nguy cơ nền (background risk) mắc phải ung thư. Các quá trình này không nằm ngoài sự chi phối của môi trường (ta đã khảo sát lần lượt qua các chương trong quyển sách này).

Gene và ung thư

Quá trình điều hòa chu kì tế bào được kiểm soát bởi các protooncogene – tác động vào cả giai đoạn thúc đẩy phân bào và tác động vào các gene ức chế sinh ung.

Hình 33.2: Các cơ chế chuyển protooncogene thành oncogene.

Protooncogene và oncogene

Sự phân bào được kiểm soát bởi nhiều protein trong tế bào (đã thảo luận kĩ ở chương chu kì tế bào). Tất cả các protein này là sản phẩm của gene, do vậy đột biến gene có thể làm rối loạn sự tăng trưởng của tế bào.

Protooncogene là các gene mà sản phẩm protein của nó kiểm soát sự tăng trưởng và biệt hóa của tế bào.  Khi các gene này bị đột biến nó sẽ gây ra các thay đổi cả về chất (qualitative) và lượng (quantitative), lúc này nó trở thành oncogene. Các protooncogene kích thích chu kì tế bào và thay đổi chuỗi truyền tín hiệu quyết định sự tăng trưởng, tăng sinh và biệt hóa tế bào. Một số quá trình được thể hiện ở hình ở trên.

Một số con đường hoạt hóa quá trình chuyển protooncogene thành oncogene là: Đột biến điểm, đột biến chèn thêm, khuếch đại gene, chuyển vị chromosome và có thể là sự biểu hiện của các oncoprotein (tác động ngược lại vào gene).

Gene ức chế sinh ung

Các gene ức chế sinh ung rất quan trọng trong việc giữ vững sự tăng trưởng bình thường của tế bào bằng cách loại bỏ các tiến trình không được điều hòa (unregulated progression) trong chu kì tế bào. Khi các gene này lộn xộn, nó gây ra các hậu quả sau:

Hình 33.3: Minh họa cơ chế hoạt động của p53

–          Mất chức năng – Mất/mất chức năng gene ức chế sinh ung sẽ dẫn tế bào đến ung thư.

–           p53 – đây là gene ức chế sinh ung “nổi tiếng” nhất (nó được gọi tên như vậy bởi vì nó mã hóa cho các protein có trọng lượng 53kD). Nhiều hơn một nữa ung thư ở người đều có kèm sự đột biến của p53. Mất chức năng của gene này sẽ gây mất ổn định toàn bộ hệ thống di truyền trong tế bào vì:

  • Nó điều hòa biểu hiện gene và kiểm soát một vài gene điều hòa tăng trưởng.
  • Giúp quá trình sửa chứa DNA xảy ra. Khi DNA bị tổn thương, p53 cảm ứng tổn thương và gây dừng chu kì tế bào ở G1 cho đến khi tổn thương đó được khắc phục.
  • Hoạt hóa apoptosis của tế bào bị tổn thương. Cơ chế này xảy ra nếu thương tổn của DNA vượt quá khả năng sửa chữa.

Hình 33.4: Cơ chế hình thành và thực hiện chức năng của miRNA

Đặc tính “trội” (dominant) – “lặn” (recessive) của oncogene và gene ức chế sinh ung

Một vài đột biến gene hoạt hóa quá trình chuyển đổi protooncogene thành oncogene nhưng lại bất hoạt và xóa bỏ các gene ức chế sinh ung. Đây là 2 điều kiện hoạt hóa ung thư “hiệu quả”.

Hình 33.5: Oncogene có tính trội và gene ức chế sinh ung có tính lặn.

MicroRNA (miRNA) điều hòa biểu hiện gene ở mức độ sau phiên mã. Nó được mã hóa ở vùng không mã hóa (noncoding) và intron của nhiều gene khác nhau. Các RNA chuỗi dơn này có khoảng 21 – 23 nucleotide và được tạo ra theo trình tự pri-miRNA – pre-miRNA – miRNA. miRNA trưởng thành được bổ sung không hoàn toàn vào một hoặc một vài mRNA và giải nhạy cảm biểu hiện gene.

miRNA được cho là ảnh hưởng đến quá trình sản xuất cytokine, growth factor, transcription factor,… Thuộc tính biểu hiện của miRNA thường thay đổi trong các khối u. Quá biểu hiện miRNA có thể giảm nồng độ các protein được tạo ra bởi gene ức chế sinh ung. Ngược lại, khi miRNA bị mất chức năng tác dụng lên các oncogene thì sẽ tăng biểu hiện các gene đích. Do vậy, miRNA vừa đóng vai trò như một oncogene, vừa có thể được xem là một gene ức chế sinh ung. Các tiến bộ đạt được hiện nay về miRNA giúp chẩn đoán và điều trị ung thư hiệu quả hơn.

Cơ chế phân tử của ung thư

Trước hết cần phải xác định rằng ung thư là một quá trình diễn ra theo thứ bậc (stepwise). Thông thường một vài biến đổi gene phải xảy ra tại các vị trí đặc biệt trước khi các biến đổi ác tính biểu hiện ở hầu hết các ung thư ở người trưởng thành. Các loại ung thư ở trẻ em không đòi hỏi nhiều sự đột biến nhiều như vậy. Một vài đột biến di truyền hiếm gặp có thể gây ra ung thư ở một hay nhiều vị trí trên các cá thể đó. Và cuối cùng, chúng ta phải luôn ghi nhớ rằng các đột biến này có dạng bản thể.

Ở chương này chúng ta sẽ khảo sát qua tổng quan các giả thuyết và bằng chứng ghi nhận được của các nhà khoa học trong giải thích cơ chế ung thư.

Điều hòa tăng trưởng

Tế bào bình thường đáp ứng với các tín hiệu hóa sinh phức tạp để có thể tăng trưởng, phát triển, biệt hóa và chết. Ung thư xảy ra khi một tế bào nào đó được “giải phóng” khỏi hệ thống kiểm soát trên và do vậy tăng sinh không ngừng. Cơ chế chính liên quan tới mTOR.

Đọc chi tiết bài viết tại đây.

CƠ CHẾ TRUYỀN TÍN HIỆU TẾ BÀO

CƠ CHẾ TRUYỀN TIN

Cơ sở sinh học phân tử tế bào

Phùng Trung Hùng – Nguyễn Phước Long

Chức năng của lộ trình tín hiệu tế bào là để chuyển thông tin từ ngoại vi tế bào đến các chất tác hiệu bên trong. Có nhiều cơ chế truyền tin mà nhờ đó thông tin được chuyển vào các lộ trình tín hiệu. Sau đây ta sẽ lần lượt tìm hiểu các cơ chế đó. Chi tiết từng quá trình sẽ được trình bày trong các chương sau.

Hình 40.1:Các mô hình truyền tin khác nhau.

Cơ chế conformational-coupling (sự gắn kết có biến đổi cấu dạng)

Thông tin có thể được chuyển từ một nguyên tố tín hiệu đến một nguyên tố tín hiệu tiếp theo nhờ vào quá trình conformational-coupling. Nếu những thành phần thường là protein này đã liên kết với thành phần khác thì cơ chế truyền tin sẽ xảy ra rất nhanh. Một ví dụ kinh điển cho cơ chế conformational-coupling là sự co và giãn cơ bám xương – nơi mà kênh CaV1.1 týp L sẵn sàng nối kết với thụ thể ryanodine (RYR1). Một ví dụ khác là sự kết hợp giữa kênh Ca2+ phụ thuộc điện thế với protein để đáp ứng với hiện tượng xuất bào của các túi synaptic.

Sự conformational-coupling cũng được dùng khi thông tin được chuyển đi bởi sự khuếch tán của các nguyên tố tín hiệu. Những phân tử truyền tin thứ hai có khối lượng phân tử thấp (Ca2+, cAMP, cGMP và ROS) hoặc các protein như ERK1/2 hay nhiều yếu tố phiên mã được hoạt hóa khác di chuyển từ tế bào chất vào nhân mang theo thông tin trong suốt quá trình di chuyển trong tế bào chất của chúng. Trong quá trình chuyển giao thông tin này, những nguyên tố có khả năng khuếch tán này sử dụng cơ chế conformational-coupling để truyền thông tin khi nó gắn vào các yếu tố thuận dòng khác.

Post-translational modifications (Điều hòa hậu dịch mã)

Hệ thống thông tin sử dụng rất nhiều protein post-translational modification để chuyển thông tin trong suốt lộ trình tín hiệu. Cơ chế cơ bản là khi chất kích thích hoạt hóa thành phần A, thành phần A này sau đó sẽ hoạt động trên thành phần B để tạo ra sự biến đổi cấu trúc trong suốt sự điều chỉnh. Sự điều chỉnh này thực hiện chức năng truyền tin của nó và thông thường rất chuyên biệt do vậy nó trực tiếp thay đổi cấu trúc các tiểu phân amino acid trên protein bằng các cách sau đây:

–          Phosphoryl hóa protein.

–          Oxi hóa protein.

–          Acetyl hóa protein.

–          Methyl hóa protein.

–          Sumoyl hóa.

–          Ubiquitin hóa. (đã được trình bày ở một chương khác)

Sự phosphoryl hóa protein

Protein kinase và phosphatase biến đổi hoạt tính của protein bằng cách gắn hoặc loại bỏ góc phosphate. Tế bào biểu hiện một lượng khổng lồ các protein kinase đáp ứng cho các thành phần tín hiệu như là một cơ chế truyền tin chính. Trong một vài trường hợp, các kinase có thể phosphoryl hóa lẫn nhau để tạo ra một dòng thác tín hiệu. Ví dụ kinh điển cho trường hợp này là lộ trình tín hiệu MAPK. Các kinase được chia thành hai nhóm chính phụ thuộc vào tiểu phân amino acid nó phosphoryl hóa gồm có: Tyrosine kinase và serine/threonine kinase. Những kinase này có nhiều hình dạng khác nhau và đều là một thành phần chức năng không thể thiếu của các thụ thể trên màng tế bào. Ngoài ra, các kinase không phụ thuộc thụ thể cũng có tác dụng trong nhiều vùng khác nhau của tế bào.

Các kinase này có thể trở thành yếu tố khởi phát cho một lộ trình tín hiệu của các thụ thể tyrosine kinase và serine/threonine kinase.

Phần lớn các kinase không liên quan đến thụ thể nhưng hoạt động trong tế bào như một phần của dòng thác tín hiệu nội bào. Họ Src, Lck, Lyn, Fyn và Syk là những kinase không liên quan đến thụ thể là thành phần quan trọng trong các lộ trình tín hiệu của tế bào T và dưỡng bào. Họ Tec tyrosine kinase cũng đóng vai trò quan trọng trong sự truyền tin sớm của lymphocyte.

Hầu hết các lộ trình tín hiệu sử dụng non-receptor serine/threonine protein kinase như một vài chặn trong suốt quá trình truyền tin. Sau đây là vài ví dụ về những kinase quan trọng:

–          AMP-activated protein kinase (AMPK)

–          β-adrenergic receptor kinase 1 (βARK1)

–          Casein kinase I (CKI)

–          CDK-activating kinase (CAK)

–          Cyclin-dependent kinase (CDKs)

–          cGMP-dependent protein kinase (cGK)

–          DNA-dependent protein kinase (DNA-PK)

–          Glycogen synthase kinase-3 (GSK-3)

–          Integrin-linked kinase (ILK)

–          LKB1

–          Myosin light chain kinase (MLCK)

–          Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK)

–          p21-activated kinase (PAK)

–          PKA

–          PKB

–          PKC

–          Rho kinase (ROK)

–          Polo-like kinase (Plks)

–          Ribosomal S6 kinase 1 (S6K1)

–          WNK protein kinase

Non-receptor protein tyrosine kinase

Có nhiều loại kinase thuộc nhóm này với nhiều chức năng thông tin quan trọng. Chúng có vùng tyrosine kinase, có chứa vùng tương tác protein nên có thể tương tác với cả các yếu tố tín hiệu thuận dòng hoặc nghịch dòng. Kinase Src có vai trò quan trọng nhất trong hình thức truyền tin này nên sẽ được trình bày tại đây.

Hình 40.2: Sự hoạt hóa Src. (1) Loại bỏ nhóm phosphate ở đầu C để hoạt hóa phân tử. (2) Tyrosine kinase phosphoryl hóa vùng kinase để tăng hoạt tính enzyme. (3) vùng kinase hoạt hóa có thể phosphoryl hóa nhiều protein đích như Abl chẳng hạn. (4) Vùng SH2 và SH3 có thể gắn vào nhiều protein đích khác nhau. (5) CSK phosphoryl hóa trở lại tyrosine ở đầu C để bất hoạt phân tử.

Src

Src là một nguyên mẫu của họ Src protein tyrosine kinase (Src, Blk, Fyn, Fgn, Hck, Lck, Lyn, Yes). Những tyrosine kinase này vừa là một chất đáp ứng vừa là một phân tử thực hiện chức năng phosphoryl hóa các phức hợp tín hiệu. Cấu trúc này có những vùng vai trò là chất đáp ứng đối ngẫu (dual adaptor) và enzyme.Lưu ý, các kinase này gắn vào màng tế bào ở đầu tận N, liên tục với vùng Src homology 3 (SH3) và vùng SH2. Vùng kinase ở đầu tận C có hai amino acid tyrosine (Tyr-416 và Tyr-527) có chức năng điều hòa hoạt động của Src. Vùng SH2 không chỉ giúp cho Src tương tác với những phân tử tín hiệu khác mà còn tham gia vào các tương tác nội phân tử để điều hòa hoạt tính của Src. Các quá trình điều hòa của Src xảy ra như sau:

–          Ở trạng thái bất hoạt, Tyr-527 được phosphoryl hóa nằm ở đầu C tạo thành mối tương tác nội phân tử với vùng SH2. Trong suốt quá trình hoạt hóa, tyrosine phosphatase loại bỏ nhóm phosphate ức chế này và phân tử được hoạt hóa.

–          Nhiều loại tyrosine kinase sẽ phosphoryl hóa Tyr-416 ở vùng kinase dẫn đến tăng hoạt tính của enzyme.

–          Vùng tyrosine kinase đã hoạt hóa có khả năng hoạt hóa nhiều cơ chất khác nhau như Abl chẳng hạn.

–          Khi ở trạng thái hoạt hóa, vùng SH2 và SH3 có thể tương tác với nhiều protein đích để thu thập các phức hợp thông tin.

–          Src bị bất hoạt bởi C-terminal Src kinase (CSK) do enzyme này phosphoryl hóa Tyr-527 để đưa phân tử này trở về trạng thái bất hoạt.

Chức năng của Src:

–          Hoạt hóa non-receptor protein tyrosine kinase Abl.

–          Cùng hoạt động với proline-rich tyrosine kinase 2 (Pyk2) để đẩy mạnh hình thành của podosome hủy cốt bào.

–          Đóng vai trò chuyển tiếp thông tin từ thụ thể integrin đến PtdIns 3-kinase tại phức hợp focal adhesion.

–          Trong quá trình tạo hủy cốt bào, colony-stimulating factor-1 (CSF-1) hoạt động trên thụ thể CSF-1R và bổ sung Src để hình thành phức hợp với c-Cbl và PtdIns 3-kinase. Src cũng phosphoryl hóa các motif hoạt hóa thụ thể miễn dịch theo cơ chế tyrosine (ITAMs) điển hình trên thụ thể FcRγ và chất đáp ứng DNAx-activating protein 12 (DAP12) để đồng hoạt lộ trình tín hiệu Ca2+ trong sự phát triển của hủy cốt bào.

–          Nó phosphoryl hóa và hoạt hóa họ Tec tyrosine kinase.

Chức năng của Abl (Abelson tyrosine kinase):

–          Abl trong bào tương được hoạt hóa bởi Src liên kết với một thụ tyrosine kinase-linked receptor như PDGFR chẳng hạn. Src phosphoryl hóa Abl và giúp phân tử này thực hiện chức năng tái cấu trúc sợi actin. Abl có thể gắn vào actin G- và F- nhưng cơ chế đến nay vẫn chưa rõ.

–          Abl cũng có thể bị hoạt hóa bởi thụ thể integrin và tại đây nó có thể tập hợp actin bằng cách hình thành phức hợp với Abelson-interactor (Abi), Wiskott-Aldrich syndrome protein (WASP) verprolin homologous (WAVE) và phức hợp actin-related protein 2/3 (Arp2/3 complex). Sự hình thành phức hợp này được thấy trong phức hợp focal adhesion.

Hình 40.3: Chức năng của Abl ở tế bào chất và trong nhân.

–          Ngoài ra, Abl cũng có thể hoạt động trong nhân. Tại đây, chức năng của nó được cho là phụ thuộc vào khả năng tương tác của nó với pocket protein retinoblastoma susceptibility gene Rb.

–          Tác dụng ức chế của Rb sẽ mất đi khi nó được phosphoryl hóa bởi phức hợp cyclin D/cyclin dependent kinase 4 (CDK4) – đây một thành phần của lộ trình tín hiệu chu kì tế bào.

–          Abl trong nhân cũng có thể được hoạt hóa bởi nhiều tác nhân kích thích stress như là hoạt động bức xạ ion hóa của ATM (ataxia telangiectasia mutated) hay sự thương tổn của DNA qua DNA-dependent protein kinase (DNAPK).

–          Abl inhibition of mouse double minute-2 (MDM2) ngăn cản sự thoái giáng của p53 do ubiquitin ligase mouse double minute-2 (MDM2) và quá trình này giúp tăng cường sự phiên mã của gene gây apoptosis.

–          Abl có thể phosphoryl hóa và hoạt hóa RNA polymera II góp phần vào quá trình biểu hiện gene.

–          Abl có thể phosphoryl hóa và hoạt hóa Rad52 góp phần vào quá trình sữa chữa DNA.

Sự oxi hóa protein

Lộ trình tín hiệu redox sinh ra các góc oxy hoạt động như superoxide và hydrogen peroxide để tạo ra các phân tử truyền tin thứ hai của nó hoạt động bằng cách oxi hóa nhóm thiol đặc hiệu trên amino acid cysteine ở protein đích.

Sự acetyl hóa protein

Quá trình này đóng một vai trò quan trọng trong hiện tượng tái cấu trúc chromatin và liên quan đến sự hoạt hóa quá trình phiên mã. Histone acetyltransferase (HATs) có chức năng acetyl hóa histone để tháo xoắn chromatin, làm cho nó dễ dàng tiếp cận với nhiều yếu tố phiên mã và do vậy hoạt hóa quá trình này. Hoạt động của myocyte enhancer factor-2 (MEF2) là một ví dụ điển hình cho quá trình acetyl hóa và phản ứng khử acetyl hóa được thực hiện bởi histone deacetylase (HDACs) và sirtuins.

Sự methyl hóa protein

Chức năng của protein có thể thay đổi bởi sự methyl hóa arginine hay lysine bởi enzyme protein arginine methyltransferase (PRMTs) và Smyd-2. Các phản ứng methyl hóa này sẽ bị đảo ngược bởi các enzyme demethylase như histone lysine-specific demethylase (LSD1) có chức năng loại nhóm methyl khỏi p53.

Quá trình này điều hòa nhiều protein và các quá trình của tế bào, cụ thể như:

–          Thay đổi hoạt tính của transcriptional regulator peroxisome-proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) trong quá trình kiểm soát sự biệt hóa của tế bào mỡ nâu.

–          Sự methyl hóa protein p53 là một quá trình điều hòa sự phiên mã gene.

–          Sự methyl hóa histone tại vị trí lysine và arginine tại đầu N của Histone H3 có thể có tác dụng rõ rệt đến cấu trúc của chromatin.

–          Chất đồng kiềm hãm switch independent (SIN3) có chức năng tái cấu trúc chromatin chứa một lượng lớn các phức hợp nhân (core complex) chứa nhiều methyl transferase như enzyme đặc hiệu cho histone H3 chẳng hạn.

Sự sumoyl hóa

Hiện tượng này là một ví dụ của cơ chế post-translation modification mà nhờ đó chức năng của protein được sửa đổi bởi các liên kết cộng hóa trị với “small ubiquitin related modifier” (SUMO). Sự gắn SUMO tạo ra một sự biến đổi trên hoạt tính, độ ổn định và vị trí của protein đích. Có 4 protein SUMO hiện diện ở người, 3 SUMO đầu hiện diện rộng khắp trong khi SUMO-4 giới hạn trong một số loại tế bào (thận, lách và hạch lympho). Trong hầu hết các trường hợp, 1 phân tử SUMO được gắn vào protein, nhưng cả hai phân tử SUMO-3 và SUMO-4 có thể tạo thành chuỗi SUMO nhờ khả năng tạo thành liên kết isopeptide giữa hai phân tử SUMO với nhau.

Đọc toàn bộ bài viết tại đây.