Category Archives: Hóa học cơ sở

ĐẠI CƯƠNG THUYẾT TRƯỜNG TINH THỂ

Phùng Trung Hùng – Nguyễn Phước Long

Khó có thể giải thích được quang phổ, từ tính, cấu trúc và hoạt tính hóa học của các hợp chất kim loại bằng một mô hình lý thuyết đơn lẻ nào. Tuy nhiên, người ta thường dùng thuyết trường tinh thể để giải thích vì tính đơn giản và dễ hiểu của nó. Trong thuyết trường tinh thể (và cả thuyết MO), sự tương tác giữa ion kim loại và các phối tử là lực tĩnh điện. Ion kim loại (cation) liên kết với các phối tử tích điện hoặc không tích điện xung quanh có tính phân bố đối xứng rất cao trong không gian. Ví dụ, một hợp chất phức có số phối trí là 6 thì nghĩa là trong hợp chất đó, ion kim loại liên kết với 6 phối tử xung quanh và có hình dạng lưỡng tháp tam giác. Tương tự cho một phức chất có số phối trí là 4 thì sẽ có dạng vuông phẳng,…

Hình 3.1: Một vài hình dạng phổ biến của phức chất.

Từ đây ta có 3 đặc điểm cơ bản của thuyết trường tinh thể là:

–          Phức chất vô cơ bền là nhờ lực tương tác tĩnh điện giữa ion kim loại trung tâm với các phối tử của nó. Ở cấu hình cân bằng, phức chất được ổn định bởi sự cân bằng giữa lực hút và lực đẩy của các ion/lưỡng cực.

–          Các phối tử được xem là không có hình dạng trong phức chất mà có vai trò tạo nên một trường tĩnh điện bên ngoài, nghĩa là người ta chỉ kể tới sự quan trọng của ion kim loại trung tâm mà thôi.

–          Phức chất đa diện và mỗi phối tử tạo nên một đỉnh.

Trường tinh thể bát diện

Cột kim loại chuyển tiếp đầu tiên bắt đầu bằng nguyên tố scandium (Sc), cột thứ 2 với Ytrium (Y) và cột thứ 3 với lathanum (La). Chúng là các nguyên tố có 1 electron điền vào orbital 3d, 4d, và 5d một cách tuần tự. Các ion kim loại chuyển tiếp và cấu hình electron ở các trạng thái oxi hóa sẽ được thể hiện ở các hình dưới đây. Thuyết trường tinh thể tập trung ở sự thay đổi năng lượng của orbital d khi có sự tương tác giữa ion kim loại và các phối tử.

Hình 3.2: Ion kim loại chuyển tiếp và cấu hình electron của nó ở các trạng thái oxi hóa khác nhau.

Sự sắp xếp trong không gian của 5 orbital d được mô tả trong hình dưới đây. Cần nhớ rằng, nếu một ion kim loại không liên kết với phối tử, 5 orbital d có năng lượng như nhau.

Hình 3.3: 5 orbital d và sự phân bố của nó trong không gian.

Khi orbital d có electron, bề mặt khối cầu sẽ tích điện tích âm và vì vậy mức năng lượng của orbital d sẽ tăng lên, trở nên kém bền vững hơn so với orbital d của ion kim loại tự do. Bước tiếp theo là sự suy biến năng lượng, nghĩa là có 3 orbital sẽ chiếm mức năng lượng thấp và 2 orbital sẽ có mức năng lượng cao hơn do chịu tác dụng của hiệu ứng trường tinh thể. Tuy nhiên, phức chất bát diện với 5 orbital d bị suy biến như hình vẽ dưới đây chỉ là trường hợp giả định. Trên thực tế, khi có mặt phối tử và trường điện tích của nó thì mức độ bội của quá trình suy biến sẽ giảm đi. Sự đẩy tĩnh điện giữa các orbital d và các phối tử âm điện sẽ làm tăng năng lượng khi các orbital d nào hướng đến các phối tử và làm giảm năng lượng đối với các orbital d nào hướng giữa các phối tử.

Hình 3.4: Mô tả các tiến trình vừa mô tả ở trên. Cần nhớ là t2g để chỉ 3 orbital suy biến còn eg để chỉ 2 orbital suy biến.

Ví dụ: Xét trường hợp đơn giản nhất sau đây, khi ion trung tâm phức chất bát diện chỉ có 1 electron d ngoài lớp vỏ kín. Ở đây ta xét phức chất [Ti(H2O)6]3+, [TiF6]3-,…

Đọc toàn bộ bài viết tại đây.

ĐẠI CƯƠNG ACID – BASE

Nguyễn Phước Long

Hầu hết các phân tử thuốc và các phân tử sinh học đều có ít nhất một nhóm acid hay base. Do vậy hóa học phân tích, nhất là hóa học nói về sự cân bằng của dung dịch acid – base, pH, dung dịch đệm bao trùm khắp các lý luận sinh lý và dược lý học y khoa. Tuy nhiên, phần lớn sinh viên Y khoa không có được nhận định sâu sắc về các khái niệm hóa học vẫn được sử dụng thường xuyên này, dẫn đến việc ngộ nhận kiến thức. Do vậy để có thể hiểu hết được các quá trình biến đổi của vật chất trong cơ thể người, chúng ta cần phải có một sự hiểu biết nhất định về lĩnh vực này.

Học thuyết về acid và base

Định nghĩa

Các phản ứng của dung dịch acid – base đã được mô tả từ rất sớm trong lịch sử phát triển của ngành hóa học. Tuy nhiên, sự hiểu biết có hệ thống về chúng chỉ vừa mới được làm sáng tỏ vào những năm đầu thế kỉ 20.

Học thuyết Arrhenius về acid và base ra đời vào thế kỉ 19 cho rằng acid là những chất tan trong nước và cho ra ion H+, base là những chất tan trong nước và cho ra ion OH. Một trong những hệ quả của nó được vận dụng để giải thích tính base cho các hợp chất amin (vốn không chứa nhóm OH trong cấu tạo) đó là khả năng phản ứng với nước (thủy giải) để tạo ra ion OH theo phương trình sau:

Thuyết Arrhenius cung cấp một sự hiểu biết cơ bản về các tính chất của acid – base trong dung dịch nước, tuy nhiên nó không thể giải thích được tính acid – base của vật chất trong các dung dịch có dung môi khác nước (ete, ketone, …)

Thuộc tính acid – base của vật chất cấu hàm nên trong các dung môi khác nước đã được giải thích một cách có hệ thống vào năm 1923 với học thuyết của Bronsted và Lowry (hai người cùng công bố nghiên cứu của mình một cách độc lập). Hai nhà hóa học này định nghĩa acid là những chất có khả năng cho proton còn base là những chất có khả năng nhận proton. Phản ứng được minh họa ở phương trình sau:

(1)(2)

Học thuyết này được chấp nhận rộng rãi. Ưu điểm của nó là có thể được dùng để giải thích hoạt tính acid – base của vật chất mà không phụ thuộc vào dung môi. Do vậy chúng ta sẽ làm rõ các hệ quả của học thuyết này.

Thuyết liên hợp

Nhìn vào phương trình (1) ở trên, ta thấy rằng khi hợp chất giải phóng ra H+, nó còn tạo nên một ion A- nữa, và nếu viết phản ứng theo chiều ngược lại, dựa vào định nghĩa, nó phải là một base. Tương tự cho phương trình (2). Do vậy học thuyết Bronsted về acid – base có thể được định nghĩa dựa vào phương trình sau:

 (3)

Cặp acid – base được thể hiện ở phương trình (3) được gọi là cặp liên hợp. Do vậy, theo phương trình (1), ta nói A- là base liên hợp của acid HA; dựa vào phương trình (2), ta nói BH+ là acid liên hợp của base B. Ta cần lưu ý rằng các phương trình hóa học cùng dạng với phương trình (3) phải luôn luôn đảm bảo định luật bảo toàn điện tích. Nghĩa là, tổng điện tích các chất bên trái phải bằng với tổng điện tích các chất bên phải. Một số phương trình minh họa:

Proton trong phương trình (3) là một hạt nhân trần (không có electron) là một tác nhân có khả năng tham gia phản ứng cực mạnh, khả năng phản ứng của nó cao đến mức trong các hệ thống hóa học thuần túy, chúng ta sẽ không bao giờ thu được ion H+ ở dạng riêng lẻ. Do vậy chúng ta dùng cách biểu diễn dưới dạng cặp liên hợp sẽ chính xác hơn:

Kết quả sau cùng là proton sẽ được chuyển từ cặp thứ nhất đến cặp thứ 2 (đọc theo chiều thuận).

Sau đây chúng ta sẽ tìm hiểu về các chất lưỡng tính. Lấy ví dụ là H2O – dung môi quan trọng nhất trong cơ thể chúng ta.

H2O có khả năng phân ly theo phản ứng sau:

 (4)

Do vậy nó có tính acid, và OH là base liên hợp của nó. Nhưng ngoài ra, H2O còn có khả năng phản ứng theo phương trình sau:

 (5)

Do vậy, H2O là base liên hợp của H3O+ và nó được gọi là chất lưỡng tính (amphoteric). Đặc tính này của H2O khiến nó có thể vừa đóng vai trò là base trong các phản ứng có dạng sau đây:

 (6)

Vừa có vai trò là Base khi phản ứng với các chất là acid bằng phương trình sau:

 (7)

Đọc toàn bộ bài viết tại đây.

ĐẠI CƯƠNG AMINO ACID

Phùng Trung Hùng – Nguyễn Phước Long

Thuộc tính hóa học tự nhiên của amino acid

Tất cả peptide và polypeptide đều được tạo nên từ quá trình trùng hợp α-amino acid. Trong đó, có 20 α-amino acid tham gia tổng hợp nên các protein của con người. Một vài amino acid khác cũng tồn tại trong cơ thể ở dạng tự do hay hợp chất nhưng không tạo thành peptide hay protein. Các amino acid không tạo protein này có những chức năng rất đặc biệt, và dĩ nhiên là các amino acid thiết yếu cũng có khả năng này. Ví dụ, tyrosine có trong thành phần hormone tuyến giáp, glutamate là một chất dẫn truyền thần kinh,…

Hình 6.1: Công thức phân tử của Alanine, Glutamine, Phenylalanine

Các α-amino acid trong peptide hay protein (ngoại trừ proline) có một nhóm –COOH và một nhóm –NH2, hai nhóm chức này cùng đính vào một nguyên tử carbon bất đối xứng có cấu trúc tứ diện, hay còn gọi là Cα. Ngoài ra, mỗi amino acid đều có một gốc R riêng biệt, chúng cũng đính vào Cα(ngoại lệ đối với glycine, gốc R của nó là một nguyên tử Hydro).

Hình 6.2: Cấu trúc hai hình thể tồn tại của glycine ở trạng thái khí. Lưu ý khả năng quay của nguyên tử nguyên tố carbone.

Những năm gần đây, Joseph Krzycki và đồng nghiệp của mình ở đại học Ohio đã khám phá ra một dẫn xuất của lysine là pyrrolysine trong một số loài sinh vật cổ, (archaeal species) như Methanosarcina barkeri chẳng hạn. Pyrrolysine và selenocysteine đều được tìm thấy trong cấu trúc tự nhiên của protein nhờ vào hoạt động của các phân tử RNA đáp ứng đặc biệt. Chính sự hiện diện 2 amino acid này trong một số protein khiến cho các nhà khoa học thắc mắc, liệu học thuyết về protein của chúng ta đã hoàn chỉnh chưa, và có bao nhiêu loại amino acid khác nữa có thể hiện diện trong protein mà chúng ta chưa phát hiện được?

Phân loại các amino acid

Người ta dựa vào gốc R để phân loại các amino acid. Nếu phân chia dựa vào tính chất của gốc R thì ta có hai nhóm amino acid, là nhóm ưa nước và nhóm kị nước.

Nhóm amino acid kị nước không hoặc khó tan trong nước, do vậy phần lớn các amino acid này sẽ nằm ở phần nội (interior) của protein. Nhóm amino acid này không ion hóa cũng như hình thành liên kết hydro.  Nhóm amino acid ưa nước có liên kết chặt chẽ với môi trường nước và thường tạo liên kết hydro với môi trường và giữa các amino acid với nhau. Do tính chất đặc biệt như vậy, các amino acid ưa nước tồn tại mở mặt ngoại của amino acid hay trong trung tâm phản ứng của các enzyme.

Hình 6.3: Cách đánh chữ cái Hy Lạp đối với các amino acid.

Liên kết peptide

Liên kết peptide được hình thành từ phản ứng polymer hóa amino acid để tạo thành peptide và protein có dạng R-CO-NH-R’. Một số hormone hay neurotransmitter, kháng sinh và tác nhân chống u (antitumor agents) có bản chất là peptide – một chuỗi ngắn gồm một số amino acid.

Xem toàn bộ bài viết tại đây.

CẤU TRÚC VÀ CHỨC NĂNG CỦA CÁC HỢP CHẤT PHOSPHATE VÔ CƠ (SINH HỌC)

Phần 1: CẤU TRÚC CÁC HỢP CHẤT PHOSPHATE VÔ CƠ

Để có một cái nhìn đầy đủ về những quá trình sinh lý xảy ra trong cơ thể sống, chúng ta cần hiểu rõ cấu trúc hóa học của các hợp chất tham gia vào các quá trình đó, mà hợp chất phosphate hầu như luôn luôn xuất hiện. Do vậy, chương này sẽ trình bày về quá trình tìm kiếm và những kiến thức mới nhất của nhân loại về cấu trúc hóa học của hợp chất phosphate lõi (condensed phosphate) – loại hợp chất trước đây thường được gọi với cái tên dài hơn là metaphosphates và hexametaphosphates (nay không còn dùng nữa).

Cấu trúc của hợp chất phosphate lõi

Việc xác định được cấu trúc phân tử của các hợp chất phosphate là một quá trình hết sức gian nan. Vào năm 1816, Berzelius đã quan sát thấy rằng những sản phẩm được tạo ra từ việc nung nóng acid orthophosphoric (H3PO4) có thể làm kết tủa protein. Graham sau đó cho rằng mình đã thu được NaPO3 khi nung chảy NaH2PO4 vào năm 1833 và đặt tên cho nó là metaphosphate. Nhưng chỉ ít lâu sau đó, Fleitmann và Henenberg (1848) đã chứng minh được rằng metaphosphate có cấu trúc chung là MPO3 (với M là hydrogen hay là một kim loại có hóa trị I). Có rất nhiều nghiên cứu được tiến hành từ sau đó, trong suốt một trăm năm, các nhà khoa học không ngừng nghỉ tìm kiếm các hợp chất phosphate mới và đặt tên cho các sản phẩm mình thu được. Tuy nhiên, sự thật lại quá phủ phàng khi mà hầu hết các công trình đó đều thất bại vì họ chỉ thu được các “hỗn hợp chất” với thuộc tính thay đổi ở mỗi lần thí nghiệm (do tỉ lệ nồng độ giữa các chất thay đổi). Phải mãi đến những năm 50 và 60 của thế kỉ 20, Thilo, Van Wazer, Ebel và Boulle đã xác định được chính xác cấu trúc và thuộc tính của gốc phosphate trong các hợp chất và đưa ra được bảng phân loại dựa trên danh pháp của họ.

Theo cách phân loại hiện nay, các hợp chất phosphate lõi được chia thành cyclophosphate, polyphosphate và phosphate phân nhánh vô cơ (ultraphosphate).

Hợp chất phosphate vòng (cyclophosphates)

Hợp chất thật sự được gọi là cyclophosphate (hay metaphosphate) là những hợp chất anion vòng. Từng bị lẫn lộn với MPO3 (do Graham đưa ra nhận định sai lầm của mình). Chỉ có 2 đại diện tiêu biểu cho nhóm này là M3P3O9 (cyclotriphosphate) và M4P4O12(cyclotetraphosphate), chúng được minh họa trong hình dưới đây.

Người ta chưa thể phân lập được hợp chất mono- hay di- metaphosphates trên thực tế cũng như chưa có được những dữ kiện lý thuyết chắc chắn. Nhưng những hợp chất vòng phosphate chứa nhiều hơn 10 hay 15 nhóm phosphate (crystalline) tồn tại dưới dạng tinh thể đã được phân lập vào năm 1958 bởi Van Wazer.

Hình 13.1: Cấu trúc (a) Vòng 3 phosphate và (b) vòng 4 phosphate. M là proton hoặc các kim loại hóa trị một.

Polyphosphate

Polyphosphate (PolyPs) được hình thành theo chuẩn tiếp chung là M(n+2)PnO(3n+1). Các anion của nó tạo thành một chuỗi mà trong đó mỗi nguyên tử của nguyên tố phosphorus liên kết với phân tử kế cận thông qua hai nguyên tử của nguyên tố oxygen. Do đó, polyphosphate tạo thành một cấu trúc không phân nhánh, có thể biểu diễn dưới dạng biểu đồ trong hình dưới đây. Độ lớn của n dao động từ 2 đến 106, và khi giá trị của n tăng lên, tỉ lệ cation/phosphorus xấp xỉ hợp chất cyclophosphate dẫn đến việc có thể có sự chuyển đổi qua lại giữa hai loại hợp chất này. Do vậy dễ dẫn đến sự ngộ nhận hai loại chất này là một. Khi n dao động từ 2-5 thì hợp chất này tồn tại dưới dạng tinh thể bền vững, khi n cao thì cân bằng chuyển đổi bắt đầu được thiết lập.

Hình 13.2: Minh họa cấu trúc của polyphosphate. Ta có thể thấy là hai tiểu đơn vị trong cấu trúc polyphosphate liên kết với nhau bằng nguyên tử của nguyên tố oxygen.

Khi n = 1 ta có orthophosphate (Pi), khi n = 2 ta có pyrophosphate (PPi). Cách gọi tên khi n>3 có khác một chút với các hợp chất cyclophosphate, cụ thể khi n = 3 ta sẽ gọi là tripolyphosphate, n = 4 ta có tetrapolyphosphate,…

Khi n vào khoảng 102 và cation là Na+, ta thu được muối Graham.

Khi n khoảng 2 x 104 và cation là K+, ta thu được một hợp chất có cấu trúc dạng amiang (asbestos), hay còn gọi là muối Kurrol.

Có một điều rất đáng ghi nhận là không phải hợp chất polyphosphate nào cũng có thể tồn tại ở dạng tinh thể. Lý do mà muối Graham không thể kết tinh được là vì cấu trúc này luôn có sự tồn tại của nhiều chuỗi polyphosphate chỉ khác nhau ở độ dài. Hơn nữa, độ dài các chuỗi polyphosphate gần bằng nhau của chúng  khiến sự kết tinh cũng khó có thể xảy ra bởi vì sự “kéo dài chuỗi” không thuận lợi về mặt năng lượng do các chuỗi có thể thay thế lẫn nhau vô trật tự khi quá trình kết tinh hóa xảy ra. Ngoài ra, yếu tố ảnh hưởng đến độ dài tối đa mà các hợp chất polyphosphate có khả năng kết tinh đó là sự tăng phân cực của phân tử.

Bảng 13.1: Mô tả thành phần của một mẫu muối Graham’s (Dirheimer, 1964). Ta có thể thấy là luôn tồn tại một lượng cyclophosphate nhất định trong hai mẫu thử pha lẫn với một loại polyphosphate.

Phosphate vô cơ phân nhánh (branched inorganic phosphates – ultraphosphates)

Đây là những hợp chất phosphate cao phân tử không tồn tại dạng mạch thẳng như polyphosphate mà có những điểm nhánh trong cấu trúc của mình. Ví dụ như nguyên tử nguyên tố phosphorus liên kết với 3 thay vì 2 nguyên tử nguyên tố phosphorus kế cận.

Hình 13.3: Cấu trúc phân tử của hợp chất phosphate phân nhánh

Mặc dù các phân tử phosphate phân nhánh chưa được tìm thấy trong các phân tử sống (có lẽ do chúng bị phân hủy khá nhanh trong dung dịch nước, nhạy cảm với pH cũng như nhiệt độ cơ thể), hợp chất này vẫn được tin rằng có tồn tại trong các phân tử sinh học.

Hình 13.4: Mô phỏng cấu trúc của một số phân tử phosphate phân nhánh. Hình đầu tiên là [Na3H(PO)3)4](Jost, 1968), cấu trúc cuối cùng là [NaMn(PO3)3]n (Murashova và Chudinova, 1997)

Một vài thuộc tính hóa học của các hợp chất phosphate lõi vô cơ

Polyphosphate acid là một acid có hai nhóm hydroxyl (-OH) có khả năng phân ly proton khác nhau. Trong đó, nhóm hydroxyl phân cắt cuối cùng thể hiện tính acid yếu. Ngược lại, nhóm hydroxyl đầu tiên lại là một acid rất mạnh nhờ cặp electron dùng chung của nhóm bị phân cực mạnh về phía chuỗi polyphosphate bởi hiệu ứng liên hợp.

Cyclophosphate thì lại chỉ có một nhóm hydroxyl có thể hiện tính acid, và nó là nhóm acid mạnh với khả năng phân ly gần như hoàn toàn. Do vậy người ta dựa vào sự khác nhau này để phân biệt cyclophosphate và polyphosphate. Phương pháp này lần đầu tiên được dùng để xác định chiều dài trung bình của chuỗi phosphate lõi vào năm 1950 bởi Wan Wazer và nó cũng được dùng để phá vỡ đức tin “clyclophosphate và polyphosphate là một” đã kéo dài hơn một trăm năm trước.

Tất cả muối kiềm của polyphosphate đều tan trong nước trong đó kali pyrophosphate tan rất nhiều, 100 g nước có thể hòa tan đến 187.4 g K4P2O7. Tuy nhiên, nhóm muối Kurrol và Maddrell (đại tinh thể phân tử natri polyphosphate)  lại không tan trong nước, riêng nhóm muối Kurrol tan được trong dung dịch muối kiềm hóa trị I (trừ muối của K+).

Các polyphosphate và cyclophosphate ổn định trong dung dịch nước trung tính hơn các phosphate phân nhánh ở nhiệt độ phòng. Sự thủy phân của liên kết P-O-P trong chuỗi polyphosphate đòi hỏi đến 10 kcal/mol – bằng với năng lượng thủy phân của liên kết của cyclophosphate và gốc phosphate hoạt động của phân tử ATP.

Hình 13.5: biểu diễn độ tan của hai polyphosphate trong ethanol

Các hợp chất phosphate phân nhánh có cấu trúc kém ổn định do vậy khả năng thủy phân của nó trong nước ở 25oC nhiều hơn 1000 lần so với các polyphosphate (do cấu trúc ổn định và bền vững). Các polyphosphate và cyclophosphate thủy phân rất chậm ở pH trung tính và nhiệt độ phòng với thời gian bán hủy của liên kết P-O-P lên tới vài năm.

Đọc toàn bộ bài viết tại đây.

ĐẠI CƯƠNG VỀ MÀNG TẾ BÀO ĐỘNG VẬT NHÂN THỰC

Phùng Trung Hùng – Nguyễn Phước Long – Lê Phi Hùng – Lê Minh Châu

Chúng ta đã nói các tri thức cơ sở về cấu trúc màng tế bào xuyên suốt nội dung các chương trước. Do vậy, chương này sẽ đi sâu, đề cập một cách hoàn chỉnh và hệ thống hóa những tri thức về màng tế bào.

Giới thiệu về màng sinh học

Màng sinh học được cấu tạo bởi lipid, protein và các carbohydrate bán rắn. Màng sinh học có cấu trúc khảm động, luôn thay đổi thành phần cấu tạo trong suốt cuộc đời của tế bào, bao quanh tế bào và  có vai trò điều hoà các hoạt động của tế bào. Các màng bên ngoài tế bào tạo nên màng bào tương còn các màng bên trong tế bào tạo nên các màng trong của các bào quan đặc biệt như nhân và ti thể

Thành phần và cấu trúc của màng sinh học

Màng sinh học được cấu tạo bởi lipids, protein và carbohydrates.

Carbohydrates liên kết với lipid tạoglycolipid và liên kết với protein tạo nên glycoprotein. Các loại tế bào khác nhau có thành phần protein và lipid khác nhau. Protein chiếm từ 20% đến 70% khối lượng màng.

Hình 22.1: Cấu trúc lớp lipid kép và tính chất khảm động

Có 3 loại lipid màng chính là: glycerophospholipids, sphingolipids, và cholesterol. Các loại lipid này sẽ được đề cập kĩ hơn ở phần lipids, tổng hợp lipid, sphingolipid và cholesterol. Sphingolipids và glycerolphospholipid chiếm phần lớn khối lượng lipid màng. Các phân tử của 2 loại lipid này với đặc điểm cấu trúc một đầu phân cực (đầu ưa nước) và một đầu không phân cực (đầu kị nước) tạo thành một lớp lipid kép (lipid bilayer) với 2 đầu kị nước quay vào nhau (xem hình dưới) . Lớp lipid kép này có thể khuếch tán bên (lateral diffusion – các phân tử của lớp có thể di chuyển dễ dàng giữa 2 lớp và thay đổi chỗ cho nhau) cũng như có thể khuếch tán ngang (transvere diffusion, flip-flop – các phân tử lipid khuếch tán từ mặt này sang mặt khác của màng). Tuy nhiên các phân tử muốn qua màng theo kiểu flip-flop này cần tạo nên cấu trúc có các đầu phân cực bao bên ngoài để qua lõi hydrocacbon của lớp kép lipid nên việc vận chuyển chất theo kiểu này là rất khó nếu không có enzyme flipase hỗ trợ quá trình này.

Hình 22.2: Cấu trúc điển hình của một phosphate-lipid (phospholipid)

Màng sinh học cũng chứa protein, glycoprotein và lipoprotein. Có 2 dạng protein thường gặp trên màng là: protein xuyên màng (integral protein) và protein ngoại vi (peripheral protein). Các protein xuyên màng hay còn gọi là protein nội màng (intrinsic protein) bám chặt vào màng và nằm trong lớp lipid kép nhờ vào các liên kết kị nước còn protein ngoại vi còn được gọi là protein ngoại màng (extrinsic protein) liên kết với màng bằng các liên kết lỏng lẻo với các đầu phân cực (mặt trong hay mặt ngoài của lớp lipid kép) hay với protein xuyên màng. Các protein ngoại vi thường nằm ở mặt bào tưởng của màng sinh học hay mặt trong của các màng bào quan.

Bảng 22.1: CTHH một số acid béo không no

Các protein liên kết màng sinh học được gọi là lipoprotein, phần lipid của lipoprotein giúp phân tử protein này bám vào màng sinh học bằng liên kết trực tiếp với lớp lipid kép hay gián tiếp thông qua protein xuyên màng. Phần lipid này là các isoprenoid như farnesyl và geranyl – các acid béo như myristic, acid palimitic, glycoslphosphatidylinositol, GPI (còn được gọi là glipiated protein).

Hoạt động của lớp màng sinh học

Hình 22.3: Màng bào tương là vị trí thích hợp của nhiều protein bề mặt: Thụ thể, kênh ion, transporter và phân tử kết dính.

Protein và lipid phân bố trên màng không giống nhau. Ví dụ: mặt trong của lớp lipid kép có nhiều phosphatidylethanolamine còn mặt ngoài thì nhiều phosphatidyl choline. Các carbohydrate bám vào lipid hay protein được tìm thấy nhiều nhất ở mặt ngoài của màng. Sự phân bố không giống nhau giữa protein và lipid đã tạo ra các tiểu vùng (sub-domain) chuyên biệt cao trong màng và các cấu trúc có màng chuyên biệt cao (như lưới nội bào tương (ER), bộ máy golgi và các túi tiết). Các túi tiết tổng hợp các yếu tố tế bào trong ER rồi sau đó được đưa đến bộ máy Golgi và cuối cùng đến màng sinh học để hoạt hóa các protein xuyên màng như thụ thể của yếu tố tăng trưởng (growth factor receptor). Trong quá trình vận chuyển từ nang đến màng sinh học các protein tiết này đã trải qua nhiều sự biến đổi trong đó có cả hiện tượng glycosyl hóa.

Hình 22.4: Cấu trúc bất đối xứng của lớp phospholipid màng

Các túi tiết được bộ máy golgi xuất ra được gọi là túi tiết trưởng thành  (coated vesicle). Màng của các nang này được tạo bởi các protein giá đỡ chuyên biệt có khả năng tương tác với môi trường ngoại bào. Dựa vào protein tạo thành lớp bao của túi tiết, người ta phân các túi tiết này thành 3 loại chính: (1) túi clathrin (Clathrin-coated vesicle) bao gồm protein gian màng, GPI-linked protein và protein tiết để đưa đến màng sinh học. Các túi tiết này còn tồn tại trong quá trình nhập bào (như trong quá trình hấp thu LDL bào tương của gan thông qua thụ thể của LDL); (2) COPI (COP = coat protein) tạo nên bề mặt cho các túi vận chuyển giữa các khoang của bộ máy golgi. (3) COPII tạo nên bề mặt các túi tiết được chuyển tử ER sang bộ máy golgi.

Cấu tạo bề mặt màng của mỗi tế bào phụ thuộc vào các tế bào lân cận mà nó tiếp xúc. Bề mặt màng của tế bào tương tác với các thành phần ống còn được gọi là mặt đỉnh (apical surface), mặt còn lại được gọi là mặt đáy bên (basolateral surface). Hai bề mặt này có thành phần lipid và protein cấu tạo tương đối khác nhau.

Hình 22.5: Mô tả mặt đỉnh và mặt đáy bên của màng tế bào.

Hầu hết các tế bào nhân thực đều tiếp xúc với các tế bào kế cận và đây là cơ sở để tạo nên các hệ cơ quan. Các tế bào nằm kế cận nhau trao đổi chất với nhau thông qua các liên kết khe (gap junction). Liên kết khe là các kênh liên tế bào và được cấu tạo từ các connexin có nhiệm vụ chính là dinh dưỡng cho các tế bào của cơ quan không tiếp xúc trực tiếp với dòng máu.

Xem toàn bộ bài viết tại đây.

Khái luận về Genetics

KHÁI LUẬN VỀ GENETICS

Phùng Trung Hùng – Lê Minh Châu – Nguyễn Phước Long

Y học đang dần phát triển từ một nghệ thuật chữa bệnh trong đó các tiêu chuẩn thực hành được thành lập trên cơ sở kinh nghiệm cá nhân sang phương pháp khoa học được kiểm chứng nghiêm ngặt.Việc áp dụng các phương pháp khoa học tạo nên những tiến bộ lớn trongcác lĩnh vực sinh lý học, vi sinh, hóa sinh và dược học. Những tiến bộ này có vai trò như làcơ sở cho các phương pháp tiếp cận chẩn đoán và điều trị những bệnh tật thông thường của các bác sĩ trong thế kỉ 20.

Bắt đầu từ những năm 1980, người ta ngày càng hiểu biết thêm về cơ sở phân tử của di truyền học và những tiến bộ trong lĩnh vực này đã giúp tìm ra một chân trời mới trong xác địnhcơ sở “thông thường” bệnh gene di truyền (ví dụ: bệnh thiếu máu hồng cầu hình liềm) cũng như cơ sở những đặc điểm di truyền phức tạp (ví dụ, tăng huyết áp). Các cơ sở phân tửtrong sự tương tác giữa gene và môi trường cũng đã bắt đầu được xác định. Ngày nay, nhờ vào sự hỗ trợ của các kĩ thuật nhạy và chuyên biệt, các bác sĩ đã hiểu được cơ sở phân tửcủa các quá trình bệnh sinh phức tạp và xác định nguy cơ các bệnh thông thường ở từng cá nhân. Muốn hiểu biết về y học hiện đại cần phải hiểu biết về di truyền học phân tử và cơ sởphân tử của bệnh.

Chương này cung cấp một cái nhìn tổng quan về di truyền học, trong đó PCR chỉ là một phương pháp ứng dụng các thành tựu khoa học để nhân bản các đoạn DNA (có thể là gene hoặc không) mà thôi, không phải là tất cả như một số người vẫn quan niệm. Nội dung về các nguyên tắc của y học phân tử đã và sẽ được nhấn mạnh ở từng phần cụ thể trong sách, không chỉ về genetics mà còn về epigenetics, proteomics, lipidomics,…

Acid deoxyribonucleic và mã di truyền

Tất cả các thông tin cần thiết để tạo thành một sinh vật đều được mã hoá từ deoxyribonucleic acid (DNA)  chứa trong hạt nhân của mỗi tế bào sinh vật. Các DNA này tạo nên bộ gene của sinh vật. Khung đường deoxyribose của DNA được tạo thành từ liên kết phosphodiester (5′-3′) giữa cacbon thứ năm của vòng pentose này và carbon thứ ba của vòng pentose kế tiếp. Mỗi monomer deoxyribose phosphate liên kết cộng hóa trị với một trong bốn nucleic acid base: adenine purin (A), guanine (G), cytosine pyrimidines (C) và thymine (T). Và các nucleic acid base của 2 chuỗi này nối với nhau bằng các liên kết hydro theo nguyên tắc bổ sung.

Theo nguyên lí nhiệt động lực học thì adenine liên kết với thymidine và cytosine liên kết với guanine.

Trong bộ gene của con người, có khoảng 6 ×109 nucleotide hay 3 ×109cặp nucleotide, liên kết với nhau trong một chuỗi xoắn kép. Tính đặc trưng của DNA được qui định bởi trình tựcác nucleotide, và trình tự này được lưu trữ trong cấu trúc xoắn kép, tạo điều kiện sửa chữa lỗi và cung cấp một cơ chế để nhân rộng các thông tin trong quá trình phân chia tế bào.Trình tự các nucleotide của một mạch đơn trong DNA đóng vai trò như một khuôn mẫu để cho quá trình nhân đôi (quá trình có DNA polymerases tham gia tháo xoắn chuỗi DNA để tạo nên những DNA con giống hệt DNA mẹ).

DNA được nén chặt và liên kết với chromatin protein để tạo thành nhiễm sắc thể trong nhân. Tế bào con người có 23 cặp nhiễm sắc thể, mỗi cặp đều chứa những trình tự nucleotide hay thông tin di truyền riêng biệt.Hầu hết các loại tế bào đều chứa nhiễm sắc thểở trạng thái lưỡng bội, dạng đơn bội chỉ gặp ở những tế bào giao tử. Thông tin di truyền của nhiễm sắc thểđược chứa trong gene. Gene được định nghĩa là một đơn vị trình tự nucleotide, có vai trò mã hóa những chuỗi polypeptide chuyên biệt trong bộ gene lưỡng bội của con người. Có gần 30000 đến 40000 gene không có chức năng mã hóa protein và chức năng của chúng cũng chưa được biết rõ. Trung bình mỗi nhiễm sắc thể có từ 3000 đến 5000, có kích thước từ 1kilobase(kb) đến 2 megabase (Mb).

Hình 47.1: Cấu trúc DNA. Ở bên trái hình là cấu trúc của từng nucleotide với 4 loạinucleic acid base. Ở bên phải hình là cấu trúc xoắn kép của DNA được tạo nên bởi những liên kết hydro, guanine (G) nối với cytosin (C) bằng 3 liên kết hydro còn adenine (A) nối với thymine (T) bằng 2 liên kết hydro.

Vị trí của cácgene trên nhiễm sắc thể rất quan trọng đối với quá trình tiếp hợp và trao đổi đoạn trong giảm phân. Trong quá trình tái tổ hợp thông tin di truyền, các nhiễm sắc thể trong cặp tương đồng (1 có nguồn gốc từ bố và 1 có nguồn gốc từ mẹ) sẽ tiếp hợp và trao đổi đoạnđể tạo nên 1 tổ hợp mới. Khả năng tái tổ hợp thường phụ thuộc vào khoảng cách giữa 2 allele và khoảng cách này được tính bằng centimorgan: 1 centimorgan được qui định là khoảng cách giữa 2 allele mà ở khoảng cách này 2 allele có 1% cơ hội xảy ra hoán vị (hay bắt chéo trao đổi đoạn). Hiện tượng trao đổi đoạn này giúp tạo nên nhiều tổ hợp mới ở các thế hệ sau và qua đó giúp tạo nên sựđa dạng cho bộ gene của loài. Thông qua phân tích xu hướng di truyền cùng nhau của các cặp allele chuyên biệt ta biết được rằng khoảng cách tái tổ hợp trong bộ gene con người xấp xỉ khoảng 3000 centimorgan.

Quá trình tổng hợp protein diễn ra trong bào tương, quá trình này giúp chuyển thông tin di truyền từ DNA trong nhân thông qua mRNA ra bên ngoài bào tương. RNA khác DNA ở 2 điểm trong cấu trúc: (1) khung polymer của RNA được tạo bởi các phân tử đường ribose liên kết với nhau bởi liên kết phosphodieste, (2) RNA cónucleic acid base là U(uracil) thay cho T(thymine) trong DNA. mRNA được tạo ra thông qua hoạt động của enzyme DNA-dependent RNA polymerase trong quá trình phiên mã, men này sao chép chuỗi”antisense” của chuỗi xoắn kép DNA để tạo nên mRNA mạch đơn, mRNA này giống với chuỗi “antisense”của chuỗi xoắn kép DNA. mRNA mới tạo thành bao gồm những đoạn exon (có khả năng mã hóa) nằm xen kẽ với các đoạn intron (không có khả năng mã hóa) nên chúng còn trải qua quá trình cắt để tạo nên mRNA trưởng thành chỉ bao gồm các exon. Những mRNA trưởng thành này sẽ ra khỏi nhân đi vào bào tương và bắt đầu quá trình dịch mãđể tạo thành các chuỗi polypeptide.

Hình 47.2: Bắt chéo và tái tổ hợp. A, 2 nhiễm sắc thể lưỡng bội 1 cặp từ bố và 1 cặp từ mẹ (đỏ và xanh), 2 locus gene được đánh dấu bằng hình tròn và hình vuông. B, bắt chéo của một nhiễm sắc thể lưỡng bội từ một từ bố và một từ mẹ. C, Kết quả của quá trình bắt chéo và trao đổi đoạn.

Tổng hợp protein (dịch mã) xảy ra tại ribosome (phức hợp có phân tử lượng lớn của protein và rRNA ở trong bào tương). Dịch mã là sự chuyển các mã bộ ba di truyền kế tiếp nhau thành các amino acid. Có 64 bộ ba mã hóa được tạo bởi 4 loại nucleotide nhưng chỉ có 20 amino acid khác nhau như vậy một amino acid có thể được mã hóa từ nhiều bộ ba mã hóa. Bắt đầu quá trình dịch mã, tRNA mang amino acid thích hợp sẽ nhận diện và liên kết với bộ ba mã hóa trên mRNA bằng bộ ba đối mã trên nó. Lưu ý: MộttRNA chỉ liên kết được với một amino acid. Tiếp theo các enzym trên ribosome tạo liên kết peptid để nối các amino acid lại với nhau, sau đó tRNA sẽ tách khỏi mRNA. Các amino acid được tiếp tục thêm vào cho đến khi gặp bộ ba kết thúc và kết thúc quá trình dịch mã tại đây. Đây cũng là sự kiện cuối cùng trong quá trình chuyển thông tin từ chuỗi DNA trong nhân sang protein trưởng thành (DNA → RNA → protein). Các protein này ảnh hưởng trực tiếp đến hình dạng và chức năng của sinh vật. Nói cách khác, biểu hiện proteomics quyết định tính trạng chứ không phải khung nền DNA. Vì vậy sự bất thường trong cấu trúc hay chức năng của protein do sự thay đổi của chuỗi amino acid có thể gây nên sự biến đổi ở kiểu hình, thậm chí có thể gây bệnh.

Đọc toàn bộ bài viết tại đây.

Phân biệt Biochemistry và Biological chemistry

Phân biệt Biochemistry và Biological chemistry

Có rất nhiều định nghĩa phân biệt 2 môn học này. Nhưng đại thể, sự khác nhau nằm ở đây (sau khi tham khảo qua những quyển sách textbook ‘đình đám’ và cách phân chia, định nghĩa môn học của một số đại học trên internet):

Biochemistry: Nghiên cứu về các đại phân tử sinh học và sự tương tác của nó trong hệ thống sống.

Hệ quả: Có thể coi cái này là 1/3 hóa học và 2/3 sinh học.

Biological chemistry: Ứng dụng thành tựu hóa học, nhất là hóa học hữu cơ vào nghiên cứu các phân tử sinh học tổng hợp và vận dụng chúng trong hệ sinh học. Và có những quan niệm mới đây cho rằng đây là một ‘phân ngành’ của Pharmacology.

Hệ quả: Có thể coi cái này là 2/3 hóa học và 1/3 sinh học.

Ngoài ra còn có môn học bioanalytical chemistry nữa (mình lại đang rất quan tâm tới món này, vì thực ra đó là cái mình định theo đuổi trước khi vào trường Y khoa), nhưng không quan trọng đối với đa số chúng ta nên không bàn ở đây.

Phân định định nghĩa và phân tích khá hay trên wikipedia:

Tài liệu tham khảo

TÀI LIỆU THAM KHẢO SÁCH SINH HỌC PHÂN TỬ TẾ BÀO

Tài liệu

  1. Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai: Cellular and Molecular immunology 7th, Elsevier Saunders, 2012, 15:89.

  2. Adams & Victor’s Principles of Neurology, 9th Edition MacGrawhill, 2009.

  3. ADA 2009 Standards of medical care in diabetes–2009. Diabetes Care 32 Suppl 1:S13-61

  4. American Diabetes Association. (2010). Standards of Medical Care in Diabetes – 2010. Diabetes Care Journals, 33, pp. 11 – 61
  5. Andrew E. Williams: Immunology, mucosal and body surface defences, Wiley-Blackwell, 2012, 20:42.

  6. Austin V. 2004. Fundamentals of the nervous system and nervous tissue. Pearson Education, Inc., Benjamin Cummings. From, Marieb E.N. 2004. Human Anatomy & Physiology, Sixth Edition.

  7. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324:71.

  8. Atlas of the Human Brain and Spinal Cord . Fix, James D. Copyright ©2008 Jones and Bartlett Publishers 2010.
  9. Bray, S.J. (2006) Notch s ignalling: a s imple p athway becomes complex. Nat. Rev. Mol. Cell Biol. 7 :678–689

  10. Bertrand ME, Simoons ML, Fox KA, et al. Management of acute coronary syndromes: acute coronary syndromes without persistent ST segment elevation; recommendations of the Task Force of the European Society of Cardiology. Eur Heart J 2000; 21:1406

  11. Brothers S, Asher MI, Jaksic M, Stewart AW. Effect of a Mycobacterium vaccae derivative on paediatric atopic dermatitis: a randomized, controlled trial. Clin Exp Dermatol 2009; 34:770

  12. Campbell R, Sangalli F, Perticucci E, Aros C, Viscarra C. Effects of combined ACE inhibitor and angiotensin II antagonist tratment in human chronic nephropathies. Kidney Int 2003;63:1094-103.

  13. Cell Signalling Biology Michael J. Berridge.2009.
  14. Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71(2):216-225

  15. Color Atlas of Biochemistry 2ed, Koolman, 69:93

  16. Cortinovis M, Cattaneo D, Perico N, Remuzzi G. investigational drugs for diabetic nephropathy. Expert Opin Investig Drugs 2008;10:1487-500.

  17. Conn’s Current Therapy 2008, 60th ed. Elsivier&saunder.
  18. Cooperberg BA, Cryer PE: Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59:2936-2940, 2010
  19. Czech, M.P. (2000) PIP2 and PIP3 : complex roles at the cell surface. Cell 100:603–606.

  20. David Hames & Nigel Hooper, BIOS instant Note Biochemistry 3rd [7-8]

  21. David J Rossi, James D Brady & Claudia Mohr, Astrocyte metabolism and signaling during brain ischemia, 2007.

  22. Davis, R.J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252.

  23. David L. Nelson & Michael M. Cox. (2008). Principles of Biochemistry (5th ed.). W. H. Freeman and Company: New York

  24. Deanna . Kroetz, phD., Nuclear Receptors: How do they regulate Expression?

  25. Design principles of nuclear receptor signaling how complex networking improves signal transduction (Molecular systems biology 6, Article number 446)

  26. Delmas, P., Crest, M. and Brown, D.A . (2004) Functional organization of PLC s ignalling microdomains in neurons. Trends Neurosci. 27:41–47.

  27. Dienstag, JL. Acute viral hepatitis. In: Harrison’s Principles of Internal Medicine, 17th ed, Fauci, AS, Braunwald, E, Kasper, DL, et al (Eds), McGraw-Hill, Madrid 2008. p.1932.

  28. Dhingra R, Sullivan LM, Fox CS, et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 2007; 167:879

  29. Epigenetic Regulation in The Nervous System, 1st, 2013, 35:89

  30. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd Edition. Robert A. Meyers. 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  31. Encyclopedia o f  Pain. Thomas Mager, Andrea Pillmann, Heidelberg.Springer-Verlag Berlin Heidelberg New York 2007.
  32. Frankel DS, Meigs JB, Massaro JM, et al. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the framingham offspring study. Circulation 2008; 118:2533.

  33. Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB: Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808-1815, 2005

  34. Functional Ultrastructure An Atlas of Tissue Biology and Pathology, 2005,  Springer, 304:317

  35. Ganong’s review of medical physiology, 23e, 2009, chapter 22

  36. Ganong’s review of medical physiology, 24e, 2012, 214:435

  37. Golan’s Principles of pharmacology: The pathophysiologic basis of Drug therapy 2nd edition

  38. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, Twelfth edition.2011.
  39. Goetz: Textbook of Clinical Neurology, 3rd ed., 2007
  40. Gilron I, Bailey JM, Tu D, et al. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 2005; 352:1324.
  41. Gines Maria Salido & Juan Antonio Rosado, Apoptosis: Involvement of oxidative stress and intracellular Ca2+ homeostasis, Springer, 2009. 28:68

  42. Guyton & Hall Textbook of physiology, 11e, 2006. 559:570

  43. Guyton & Hall Textbook of physiology. 12e, 2011, 532:618
  44. Guido Tettamanti and Gianfrancesco Goracci Handbook of Neurochemistry and molecular Neurobiology, Springer, 2009.
  45. GREENBERG, MD, PHD.Lange Medical Books/McGraw-Hill.2010.
  46. Genetic disorder,  2013
  47. Harrison’s principle of internal medicine, 18e, part 10.

  48. Harish Shankaran, Haluk resat, H.Steven Wiley, Cell surface receptors for signal transduction and ligand transport: A design principles study.

  49. Harald Breivik, William I Campbell, Michael K Nicholas. Clinical Pain Management Practice and Procedures. 2008 Hodder & Stoughton Limited.

  50. Harper’s Illustrated Biochemistry, 28e, chapter 11, 15, 18

  51. Hamburg MA, Collins FS: The path to personalized medicine. N Engl J Med 363:301, 2010.

  52. High-Yield Cell and Molecular Biology, 3rd, 2012, 84:122

  53. Holst JJ: The physiology of glucagon-like peptide 1. Physiol Rev 87:1409-1439, 2007

  54. Hoạt động điện qua màng tế bào cơ tim, Olympiad sinh lý, 2011.

  55. Histology and Cell Biology – An Introduction to Pathology, 3rd, 2012

  56. Kapoor D, et al. The effect of teststerone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur j Endocrinol. 2007 May;156(5):595-602

  57. Kissel CK, Lehmann R, Assmus B, et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 2007; 49:234

  58. Lauschke A, Teichgräber UK, Frei U, Eckardt KU. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 2006; 69:1669

  59. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25:1015.

  60. Laurence L. Brunton, John S. Lazo & Keith L. Parker. (2007). Goodman and Gillman Pharmeceutical Basis of Therapeutics (11th ed.). The McGraw-Hill Companies: California.
  61. Lewin’s Genes X, 2010, 34:173
  62. Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 2007; 115:459.

  63. Lodish, Molecular Cell biology, 5e, 2003 [1-93] và bản dịch tiếng Việt 6e, chương 1,2,3

  64. Louis J. Ignarro. Nitric oxide : Biology & Pathobiology.  ©  2010, Elsevier Inc.
  65. Liu  PT,  Stenger  S,  Li  H,  et  al.  Toll-like  receptor  triggering  of  a  vitamin  D-mediated  human  antimicrobial  response.  Science . 2006;311:1770-1773.

  66. Libby P et al: The vascular endothelium and atherosclerosis, in The Handbook of Experimental Pharmacology, S Moncada and EA Higgs (eds). Berlin-Heidelberg, Springer-Verlag, 2006

  67. Lauren Sompayrac: How the immune system works 4th, Wiley-Blackwell, 2012, 12: 25.

  68. Lucy Bird: Mucosal immunology: IL-22 keeps commensals in their place, nature reviews doi:10.1038/nri3263, 2012.

  69. Ivan M. Roitt, Peter J. Delves: Roitt’s essential immunology 10th, Blackwell Publishing, 2010, 42:130.

  70. Is Kulaev, VM Vagabov, TV Kulakovskaya, The biochemistry of inorganic polyphosphates, 2nd, 2004.

  71. Jacobsen P, Andersen S, Jensen BR, Parving HH. Additive effect of ACE inhibition and angiotensin II receptor blockade in type i diabetic patients with diabetic nephropathy. J Am Soc Nephrol 2003;14:992-9.

  72. J.P. Borel, F.-X. Maquart, PH. Gillery, M.Exposito, Biochimie pour le clinicien – Méscanismes moléculaires et chimiques à l’origine des maladies, 1999 [176-194]

  73. John C. Foreman, Torben Johansen , Textbook of Receptor Pharmacology, Second Edition 2003, 213:236

  74. Joachim Herz & Uwe Beffect, Apolipoprotein E receptor: Linking brain development and Alzheimer’s disease, 51:58, 2005

  75. Junqueira’s Basic Histology, Twelfth Edition. 2010 by The McGraw-Hill Companies, Inc.
  76. John D. Lambris, George Hajishengallis: Current topics in innate immunity II, Springer, 2012, 32:52

  77. Katsung’s Basic and Clinical Pharmacology, 11e, 2010, chapter 2.

  78. Martindale: The Complete Drug Reference.© Pharmaceutical Press 2009
  79. Marx SJ, Simonds WF: Hereditary hormone excess: Genes, molecular pathways, and syndromes. Endocr Rev 26:615, 2005

  80. Mahoney WM, Schwartz SM: Defining smooth muscle cells and smooth muscle cell injury. J Clin Invest 15:221, 2005

  81. Maffi P, Bertuzzi F, Guiducci D, Socci C, Aldrighetti L, Nano R: Peri-operative management influences the clinical outcome of islet transplantation. Amer J Transplant 1:181, 2001

  82. Mikkelsen, R.B. and Wardman, P. (2003) Biological chemistry of r eactive oxygen a nd nitrogen and r adiation-induced signal transduction mechanisms. Oncogene 22:5734–5754

  83. Methylation DNA and RNA Histones to Diseases Treatment, 2012

  84. Metzker ML: Sequencing technologies—the next generation. Nat Rev Genet 11:31, 2010

  85. Merritt’s Neurology, 11th Edition,  Lippincott Williams & Wilkins.
  86. Meier JJ, Ritter PR, Jacob A, Menge BA, Deacon CF, Schmidt WE, Nauck MA, Holst JJ: Impact of exogenous hyperglucagonemia on postprandial concentrations of gastric inhibitory polypeptide and glucagon-like peptide-1 in humans. J Clin Endocrinol Metab 95:4061-4065, 2010
  87. Molecular and Cellular Biology of Neuroprotection in the CNS.Christian Alzheimer.Kluwer Academic / Plenum Publishers.2002.
  88. Mahin Khatami: Inflammation, chronic diseases and cancer cell and molecular biology, immunology and clinical bases, 2012, 23:132.

  89. Neurology A Queen Square Textbook.CHARLES  CLARKE ROBIN  HOWARD. 2009.
  90. Nong Z, Hoylaerts M, Van Pelt N, et al. Nitric oxide inhalation inhibits platelet aggregation and platelet-mediated pulmonary thrombosis in rats. Circ Res 1997; 81:865.

  91. Nguyễn Trí Dũng, Mô học đại cương 1st, 2009, 217:256

  92. Plasterk RH. RNA silencing: the genome’s immune system. Science 2002; 296:1263

  93. Rube Goldberg goes (ribo) nuclear? Molecular switches and sensors made from RNA

  94. Reinhard Rohkamm. Color Atlas of Neurology.Thieme 2003.
  95. Rutkowski, D.T. and Kaufman, R.J. (2004) A trip to the ER: coping w ith stress. Trends Cell Biol. 14:20–28.

  96. Richard T. Johnson, John W. Griffin, Justin C. McArthur.CURRENT THERAPY IN NEUROLOGIC DISEASE, 2006, Mosby Inc.

  97. Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998; 97:2007

  98. ROGER P. SIMON, MD&DAVID A. Clinical Neurology seventh edition.

  99. Robbins and Cotran PATHOLOGIC BASIS OF DISEASE.Copyright O 2005, Elsevier Inc.
  100. Robert R. Rich: Clinical immunology – Principles and practice 3rd, Mosby Elsevier, 2008, 62:81.
  101. Saaddine JB, Cadwell B, Gregg EW, et al. Improvements in diabetes processes of care and intermediate outcomes: United States, 1988-2002. Ann Intern Med 2006; 144:465.
  102. Salahadin Abdi, Pradeep Chopra. Pain Medicine.Copyright © 2009 by The McGraw-Hill Companies, Inc.
  103. Sealey JE, Laragh JH. Radioimmunoassay of plasma renin activity. Semin Nucl Med 1975; 5:189.
  104. Stephen G. Waxman .Molecular Neurology. Elsivier 2007.
  105. Sudhesh Kumar & Stephen O’Rahilly. (2005). Insulin ResistanceInsulin Action and Its Disturbances in Disease. John Wiley & Sons Ltd: England
  106. Taylor PJ, Cooper DP, Gordon RD, Stowasser M. Measurement of aldosterone in human plasma by semiautomated HPLC-tandem mass spectrometry. Clin Chem 2009; 55:1155

  107. Terry Kenakin, Assay Development Compound Profiling , Principles: Receptor theory in pharmacology , GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA

  108. The Diabetes Control and Complications Trial Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-independent diabetes mellitus. New England Journal Medicine, 329, pp. 977 – 986
  109. UK Prospective Diabetes Study Group. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patient with type 2 diabetes. The Lancet, 352, pp. 837 – 853
  110. Ionotropic Receptors in Postsynaptic Membranes

  111. Vi khuẩn học, nxb Y học, 2009, 87:94

  112. Vorsanova SG et al: Human interphase chromosomes: A review of available molecular cytogenetic technologies. Mol Cytogenet 3:1, 2010

  113. WARFIELD, CAROL A.; BAJWA, ZAHID H. Principles & Practice of Pain Medicine , 2nd Edition, 2004 McGraw-Hill.
  114. Wessely R, Schomig A, Kastrati A. Sirolimus and paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol. 2006;47(4):708-714

  115. Williams’s Textbook of endocrinology, 2011, 12e, 38:43

  116. Weinberger B, Laskin DL, Heck DE, Laskin JD. The toxicology of inhaled nitric oxide. Toxicol Sci 2001; 59:5

  117. William B. Coleman and Gregory J. Tsongalis. Molecular Pathology Academic, 2009.
  118. Zapol WM, Rimar S, Gillis N, et al. Nitric oxide and the lung. Am J Respir Crit Care Med 1994; 149:1375

  119. Zimmerberg, B. 2002. Dopamine receptors: A representative family of metabotropic receptors. Multimedia Neuroscience Education Project.

Hình ảnh:

  • Lodish molecular biology of the cell, 5e, 2003, ; Guyton’s physiology, 11e, 12e, 2006, 2011; Ganong’s review of medical physiology, 23e, 2009;  Katsung’s basic and clinical pharmacology, 11e, 2010; Harrison’s 18th; Cecil’s 24th, …

  • Các trang web như Nature, medscape, pathmicro, cellsignal, ncbi, bio-alive, reactome, …

Từ internet:

  1. http://themedicalbiochemistrypage.org/nuclear.html

  2. http://themedicalbiochemistrypage.org/steroid-hormones.html#receptors

  3. http://themedicalbiochemistrypage.org/peptide-hormones.html

  4. http://themedicalbiochemistrypage.org/lipids.html

  5. http://themedicalbiochemistrypage.org/cell-cycle.html

  6. http://themedicalbiochemistrypage.org/lipid-synthesis.html

  7. http://themedicalbiochemistrypage.org/muscle.html

  8. http://themedicalbiochemistrypage.org/growth-factors.html

  9. http://www.abcam.com/index.html?pageconfig=resource&rid=10602&pid=7

  10. http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29

  11. http://www.nature.com/nrd/journal/v4/n2/fig_tab/nrd1630_F1.html

  12. http://www.nature.com/nrn/journal/v3/n2/fig_tab/nrn725_F5.html

  13. http://www.nature.com/nri/journal/v1/n1/fig_tab/nri1001-050a_F1.html

  14. http://www.nature.com/nature/supplements/insights/epigenetics/index.html

  15. http://pathmicro.med.sc.edu/book/immunol-sta.htm

  16. http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/signals.htm

  17. http://www.biochemweb.org/signaling.shtml

  18. http://bio-alive.com/animations/anatomy.htm

  19. http://www.biochemj.org/csb/

  20. http://www.cybermedicine2000.com/pharmacology2000/General/Introduction/Introobj1.htm

  21. http://www.sciencemag.org/site/feature/plus/sfg/resources/res_epigenetics.xhtml

  22. http://learn.genetics.utah.edu/content/epigenetics/

  23. http://www.nature.com/nature/supplements/insights/epigenetics/index.html

  24. http://www.pbs.org/wgbh/nova/body/epigenetics.html

  25. http://www.medicinenet.com/script/main/hp.asp

  26. http://www.ncbi.nlm.nih.gov/

  27. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/H/Hormones.html

  28. http://www.cellsignal.com/

  29. http://www.sumanasinc.com/webcontent/animations/neurobiology.html

  30. http://www.biocarta.com/

  31. http://www.pharmtox.utoronto.ca/research/overview/fields/receptor.htm

  32. http://bcs.whfreeman.com/lodish6e/default.asp?s=&n=&i=&v=&o=&ns=0&uid=0&rau=0

  33. http://bcs.whfreeman.com/biochem6/default.asp?s=&n=&i=&v=&o=&ns=0&uid=0&rau=0

  34. http://www.britannica.com/EBchecked/topic/498140/renin-angiotensin-system

  35. http://www.genome.jp/kegg/pathway/hsa/hsa04614.html

  36. http://www.worldlingo.com/ma/enwiki/en/Metabotropic_receptor

  37. http://en.wikipedia.org/wiki/Nuclear_receptor

  38. https://sites.google.com/site/seadropblog/ppnckh-1

  39. http://jkweb.berkeley.edu/external/pdb/2006/pellicena-cosb/index.html

  40. http://www.nejm.org/

  41. http://physiologyonline.physiology.org/

  42. http://www.endotext.org/neuroendo/neuroendo5a/neuroendoframe5a.htm

  43. http://www.endotext.org/neuroendo/neuroendo11a/neuroendoframe11a.htm

  44. http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=69620&ID=264418&VID=4046584

  45. http://care.diabetesjournals.org
  46. https://profreg.medscape.com
  47. http://www.bioscience.org
  48. http://www.iub.edu/~k536/adipo.html
  49. http://www.pnas.org
  50. http://www.jci.org

Cơ chế tiết acid dạ dày và tương quan của H+/HCO3- là gì?

Cơ chế tiết acid dạ dày và tương quan của H+/HCO3- là gì?

Mình đọc sách và có một câu trong sách như thế này rất thắc mắc, nguyên văn câu đó là:
“… Khi một H+ được tiết vào lòng ống tiêu hóa, thì hầu như ngay lúc ấy một HCO3- sẽ được tiết theo một hướng đối nghịch vào máu, làm giảm tính acid của máu tĩnh mạch sau khi đi qua dạ dày.”

Các anh/chị/bạn nào có thể giúp mình giải thích rõ câu ở trên được không?
Cám ơn!

Trả lời:

Đây là cơ chế sinh lý tiết acid dịch dạ dày, bạn xem tham khảo nhé. Có kèm đoạn video minh họa.

Mechanism of Acid Secretion

The hydrogen ion concentration in parietal cell secretions is roughly 3 million fold higher than in blood, and chloride is secreted against both a concentration and electric gradient. Thus, the ability of the partietal cell to secrete acid is dependent on active transport.

The key player in acid secretion is a H+/K+ ATPase or “proton pump” located in the cannalicular membrane. This ATPase is magnesium-dependent, and not inhibitable by ouabain. The current model for explaining acid secretion is as follows:

  • Hydrogen ions are generated within the parietal cell from dissociation of water. The hydroxyl ions formed in this process rapidly combine with carbon dioxide to form bicarbonate ion, a reaction cataylzed by carbonic anhydrase.
  • Bicarbonate is transported out of the basolateral membrane in exchange for chloride. The outflow of bicarbonate into blood results in a slight elevation of blood pH known as the “alkaline tide”. This process serves to maintain intracellular pH in the parietal cell.
  • Chloride and potassium ions are transported into the lumen of the cannaliculus by conductance channels, and such is necessary for secretion of acid.
  • Hydrogen ion is pumped out of the cell, into the lumen, in exchange for potassium through the action of the proton pump; potassium is thus effectively recycled.
  • Accumulation of osmotically-active hydrogen ion in the cannaliculus generates an osmotic gradient across the membrane that results in outward diffusion of water – the resulting gastric juice is 155 mM HCl and 15 mM KCl with a small amount of NaCl.
Hydrochloric Acid (HCl) Production In The Stomach Animation

Lưu ý thêm:

– Cái chấm đầu tiên, OH- tác dụng với CO2 tạo ra HCO3- thực ra là một tổ hợp cân bằng như sau:
CO2+H2O <-> HCO3- + H+ (1)
H+ + OH- <-> H2O (2)

Cộng (1) và (2), loại bỏ thành phần trùng nhau ở mỗi vế ta sẽ được CO2 + OH- <-> HCO3-

– Vai trò của các antiporter khá là quan trọng trong bất kì cơ chế vận chuyển ion từ khoang này sang khoang khác. Không bao giờ được phép quên sự hiện diện của nó.

– Bất kì vai trò nào xảy ra cũng phải tuân thủ qui luật về phân bố điện tích, phân bố nồng độ và duy trì pH sinh lý. Do vậy pH trong khoang ống tiêu hóa có thể thấp, nhưng pH máu, pH dịch kẽ và tế bào thường được đảm bảo (không toan, không kiềm) bởi hệ đệm và các yếu tố giúp hệ đệm cân bằng (kênh ion, bào quan,…).

Nếu phải chọn lựa thì cơ thể sẽ hi sinh những khu vực có khả năng tái hồi hoặc chịu đựng tốt hơn để làm nơi chịu trận. Ví dụ một ít HCO3- sinh ra không ảnh hưởng đến pH máu bao nhiêu, nhưng có thể gây xáo trộn cân bằng trong tế bào, do vậy nó được đưa vào máu.

– [Nói thêm, Ít quan trọng với ai không quan tâm đến bản chất hóa học của sinh học] Ngoài ra có thể gặp các “cặp” ion thường đi kèm với nhau bởi dạng tồn tại cơ hữu của nó, ví dụ NaCl, HCl; cái phân bố này phần lớn là do thuận lợi về mặt năng lượng (có lẽ do năng lượng solvate hóa trong dung dịch và do nó có ích trong duy trì pH) và cũng bởi vì tế bào có “công cụ” thể cho quá trình vận chuyển xảy ra. Tuy nhiên cần lưu ý rằng không có dạng hợp chất NaCl, HCl (hay nói chung các dạng hợp chất ion và cộng hóa trị mà hệ số phân ly cao) tồn tại dạng liên kết trong dung dịch nước, nó là tập hợp Na+, Cl-, H+ chuyển động nhiệt tự do và chính các ion gây ra tác động. Chỗ này cứ gây hiểu nhầm hoài nên cẩn thận vẫn hơn.