Category Archives: Cơ sở lâm sàng

Thoát vị đĩa đệm cột sống thắt lưng: khi nào nên mổ?

Thông tin trên các phương tiện truyền thông về những trường hợp gặp rủi ro liệt người do mổ điều trị thoát vị đĩa đệm cột sống thắt lưng, đã khiến nhiều bệnh nhân hoang mang. Đây là bệnh rất thường gặp và đáng quan tâm bởi không chỉ ảnh hưởng lên cá nhân người bệnh mà còn đến kinh tế gia đình và xã hội. Tuy nhiên, do bệnh nhân thiếu thông tin, do một số bác sĩ nhận diện không đúng bệnh lý, lạm dụng thái quá các kỹ thuật chẩn đoán… mà đã có nhiều trường hợp tiền mất tật mang.

Không cứ “thoát” là mổ

Thoát vị đĩa đệm cột sống thắt lưng mức độ nhẹ hầu hết được điều trị bằng phương pháp bảo tồn (dùng thuốc, nghỉ ngơi, tập vật lý trị liệu…) Chỉ với những trường hợp bệnh nặng, điều trị bảo tồn thất bại mới cần xem xét khả năng điều trị bằng phẫu thuật. Phẫu thuật là phương pháp mà mọi bệnh nhân đều muốn tránh vì lo sợ biến chứng. Cũng chẳng ai muốn động dao động kéo và chịu một vết sẹo trên vùng cột sống, thắt lưng. Nhưng nếu so sánh các nguy cơ với lợi ích, một ca vi phẫu hay nội soi kéo dài không hơn 60 phút vẫn là lựa chọn tốt nhất trong điều trị thoát vị đĩa đệm nặng. Trong các trường hợp khối u chèn ép rễ thần kinh và tuỷ sống thì phẫu thuật loại bỏ chúng là phương pháp duy nhất cần thiết và hiệu quả (nhưng cũng tuỳ thuộc khối u lành tính hay ác tính).

Không phải bất cứ thoát vị đĩa đệm nào tại vùng thắt lưng đều bắt buộc điều trị mổ. Nếu bác sĩ chỉ định đúng, thường mang lại kết quả cao và thoả mãn được mong đợi của người bệnh. Ngược lại, sẽ dẫn đến hiệu quả điều trị thấp, nhiều biến chứng, liệt người, thậm chí tử vong. Hiện có hai phương pháp được coi là chính thống trong điều trị thoát vị đĩa đệm được thực hiện hàng ngày tại nhiều bệnh viện lớn, là mổ vi phẫu và mổ nội soi. Hai phương pháp này là phẫu thuật xâm lấn tối thiểu, phổ biến nhất trên thế giới hiện nay.

Thực tế không phải bệnh nhân nào cũng có thể được bác sĩ chỉ định mổ. Khi gặp bệnh nhân quá yếu, tuổi cao, có bệnh toàn thân như tim mạch, tiểu đường nặng, hoặc thoái hoá cột sống quá nặng thì không thể điều trị bằng phẫu thuật được vì rất dễ gặp biến chứng khi gây mê và trong quá trình mổ.

Nhưng có lúc chỉ mổ mới thoát

Điều này còn tuỳ thuộc chỉ định của bác sĩ là đúng hay không. Hiện nay, loại thoát vị đĩa đệm mà việc chỉ định mổ đem lại kết quả cao nhất là thoát vị lồi rất lớn chèn ép trực tiếp rễ thần kinh, hoặc vỡ vào lỗ thần kinh, đôi khi khối thoát vị chui vào trong ống sống chèn ép chùm đuôi ngựa ảnh hưởng nhiều đến cảm giác và vận động. Đối với những trường hợp này, khả năng hồi phục chức năng của thần kinh và cột sống đến 80 – 90%. Những thoát vị nhẹ hoặc chưa chèn ép rễ thần kinh hoặc chèn ép không nhiều, nếu đặt chỉ định phẫu thuật giai đoạn này thì hiệu quả hầu như không đáng kể. Chỉ định mổ bao giờ cũng phải dựa vào hai tiêu chuẩn chính là triệu chứng lâm sàng và kết quả chụp cộng hưởng từ (MRI) cột sống ngực và thắt lưng.

Đôi lúc, chính người thầy thuốc cũng rất phân vân giữa chỉ định mổ hay điều trị bằng thuốc và vật lý trị liệu. Như khối thoát vị còn nhỏ, chưa gây đau đớn nhiều nên chưa đáng để phẫu thuật, hoặc khối thoát vị lớn trên MRI nhưng không ảnh hưởng nhiều trên lâm sàng, thì có nên mổ hay không? Những trường hợp này cần đến sự tư vấn của bác sĩ chuyên khoa để chọn lựa biện pháp tối ưu. Thật ra, điều trị nội khoa không thể làm khối thoát vị biến mất hay đưa đĩa đệm trở lại vị trí cũ. Cái ranh giới mong manh này nhiều khi làm bệnh nhân có tâm lý đang phải chờ khối thoát vị lồi nhiều hơn để mổ một lần cho có kết quả tốt, nên tư vấn của bác sĩ chuyên khoa là vô cùng cần thiết.

PGS.TS.BS VÕ VĂN NHO

(Chủ tịch hội Phẫu thuật thần kinh Việt Nam. giám đốc bệnh viện chuyên khoa Ngoại thần kinh quốc tế).

SGTT

Nguyên nhân gây thoát vị đĩa đệm thường do lao động nặng, hoặc nhấc một vật nặng sai tư thế. Thậm chí, cũng hay xảy ra ở những người làm việc văn phòng do ngồi lâu, đĩa đệm chịu áp lực cột sống gây thoát vị mặc dù tuổi đời chưa cao.

SỰ LỌC CỦA CẦU THẬN

1) Màng mao mạch cầu thận

Màng mao mạch cầu thận tương tự như các mao mạch khác, ngoại trừ là nó có 3 (thay vì 2 như bình thường) lớp chính: nội mô mao mạch, màng đáy và lớp tế bào biểu mô bao quanh mặt ngoài màng đáy mao mạch (podocyte).

3 lớp này tạo nên hàng rào lọc, mặc dù là có 3 lớp nhưng chúng lọc gấp hàng trăm lần các màng mao mạch bình thường. Với tỉ lệ lọc cao như vậy nhưng màng mao mạch cầu thận vẫn ngăn cản được protein huyết tương.

màng lọc.png

Tỉ lệ lọc cao này là do cấu trúc đặc biệt của nó. Lớp nội mô mao mạch có hàng ngàn lỗ nhỏ như cửa sổ (fenestrae), tương tự như các mao mạch có lỗ được tìm thấy ở gan. Tuy là các lỗ này tương đối rộng (đường kính 160 angstrom), nhưng các tế bào nội mô lại có rất nhiều thành phần điện tích âm cố định gắn vào vậy nên vẫn ngăn chặn được protein huyết tương đi qua. Bao quanh lớp nội mô là lớp màng đáy, bao gồm một hệ thống collagen và các sợi proteoglycan (là không gian rộng lớn cho một lượng lớn nước và các chất hòa tạn nhỏ có thể lọc). Màng đáy cũng ngăn sự lọc protein huyết tương, một phần do điện tích âm rất mạnh liên quan proteoglycan.

Phần cuối cùng là lớp tế bào biểu mô. Những tế bào này không liên tục mà phân ngón thành những chân bám vào mặt ngoài màng đáy. Những “ngón chân” này ngăn cách bởi các cái lỗ nhỏ đường kính khoảng 70 (slit pore) cho dịch lọc đi qua. Các tế bào biểu mô cũng có điện tích âm lại càng làm tăng thêm sự hạn chế lọc protein huyết tương. Tóm lại 3 lớp của thành mao mạch cầu thận tạo nên một hàng rào lọc vững chắc đối với protein huyết tương.

Khả năng lọc của các chất tan tỉ lệ nghịch với kích thước của chúng.

Màng mao mạch cầu thận thì dày hơn các mao mạch khác, nhưng nó lại xốp hơn (có nhiều lỗ) và vì vậy dịch lọc có tỉ lệ cao hơn. Mặc dù tỉ lệ lọc cao, nhưng hàng rào lọc vẫn chọn lọc trong việc phân tử nào sẽ được lọc, dựa trên kích thước và điện tích của chúng.

bảng 1.png

Phân tử mang điện tích âm thì lọc khó hơn là phân tử mang điện tích dương cùng kích thước (ví dụ albumin đường kính chỉ là 6nm, trong khi các đường kính lỗ là 8 nm nhưng nó lại bị hạn chế lọc do điện tích âm của nó và lực đẩy tĩnh điện của điện tích âm của proteoglycan ở thành mao mạch cầu thận).

Hình dưới đây nói lên tác động của điện tích lên sự lọc của các phân tử dextran khác nhau.

bang2 2.png

Vậy thì khi mà điện tích âm trên màng đáy bị mất thì một số protein trọng lượng phân tử thấp, đặc biệt là albumin, sẽ được lọc vào trong nước tiểu (tình trạng này gọi là protein niệu hay albumin niệu).

Thành phần dịch lọc

Sự hình thành nước tiểu bắt đầu bằng việc lọc một lượng lớn dịch qua mao mạch cầu thận vào bao Bowman. Giống như hầu hết các mao mạch khác, mao mạch cầu thận thì tương đối không thấm với protein, do đó dịch lọc (glomerular filtrate) gồm rất ít protein tự do, không chứa hồng cầu.

Nồng độ của các thành phần khác của dịch lọc, gồm hầu hết các muối là các phân tử hữu cơ, thì có nồng độ tương tự như trong huyết tương. Có một số trường hợp ngoại lệ đó là các phân tử có trọng lượng phân tử thấp, như canxi và acid béo, không được lọc một cách tự do bởi chúng gắn một phần với các protein huyết tương. Ví dụ gần ½ canxi huyết tương là hầu hết các acid béo huyết tương gắn với protein và những phần gắn này không được lọc qua mao mạch cầu thận.

2) Tính GFR

Mức lọc cầu thận – GFR (glomercular filtration rate) là lượng dịch lọc (plasma ultrafiltrate) qua cầu thận trong một phút, được tính bằng cách đo lượng một chất trong huyết tương và lượng chất đó được thải ra. Chất dùng để đo GFR phải đảm bảo được lọc tự do qua cầu thận và phải là hoặc được tiết hoặc hấp thu. ngoài ra thì chất đó còn phải đảm bảo là không gây độc cho cơ thể và không bị chuyển hóa bởi cơ thể. Inulin, một polyme của fructoz với trọng lượng phân tử là 5200, đắp ứng được những tiêu chí này ở người và hầu hết các động vật, do đó được dùng để đo GFR.

Độ thanh thải (clearance) huyết tương ở thận là thể tích huyết tương trong đó một chất được loại bỏ hoàn toàn bởi thận trong một đơn vị thời gian (thường là một phút). Lượng chất xuất hiện trong nước tiểu trên một đơn vị thời gian là kết quả sự lọc ở thận một lượng nhất định huyết tương. GFR và độ thanh thải tính bằng đơn vị mL/min.

Qua tiến hành thao tác đo, người ta thu được các số liệu và cách tính độ thanh thải như sau:

ct.png

Trong đó:
UIN là nồng độ inulin nước tiểu
V là lượng nước tiểu trong một phút
PIN là lượng inulin trong huyết tương động mạch
C là độ thanh thải

Có thể nói lại cách tính như sau:

– U nhân với V ta được lượng inulin được lọc trong một phút

– Theo như giá trị của P, ta có được lượng inulin có trong một ml huyết tương động mạch ta có lượng inulin được lọc trong một phút là 35×0,9=63/2, vậy để lọc hết 1/4 mg inulin cần 1/126 phút.

Trong 1/126 phút thì “độ thanh thải” là 1ml, vậy suy ra độ thanh thải cần tính (trong một phút) bằng 126 mL/phút (nhân chéo chia ngang).

Độ thanh thải của creatinin cũng có thể được dùng để tính GFR, tuy nhiên đôi khi nó được tiết bởi ống thận vì vậy sẽ làm tăng nhẹ độ thanh thải của nó so với inulin (điều này có thể dễ thấy dựa trên công thức tính trên). Nó được dùng như là một chỉ số đánh giá chức năng thận (bình thường là 1mg/dL).

bảng 3.png

GFR bình thường

GFR ở người trưởng thành khỏe mạnh trung bình khoảng 125 mL/phút, tương đương 180L/ngày trong khi lượng nước tiểu chỉ có 1L/ngày. Vì vậy 99% hoặc hơn dịch lọc được tái hấp thu. Với tỉ lệ 125mL/phút, trong một ngày thận lọc một lượng dịch bằng 4 lần tổng lượng nước cơ thể, 15 lần thể tích dịch ngoại bào và 60 lần thể tích huyết tương.

3) Điều hòa GFR

Các yếu tố chi phối sự lọc qua mao mạch cầu thận cũng giống như ở các mao mạch khác, đó là kích thước giường mao mạch, tính thấm của mao mạch, áp suất thủy tĩnh và áp cuất thẩm thấu qua thành mao mạch. Với mỗi nephron ta có công thức sau:

ct2.PNG

Trong đó:
Kf là hệ số lọc cầu thận (phụ thuộc tính thấm của mao mạch cầu thận và diện tích bề mặt)
Pgc là áp suất thủy tĩnh của mao mạch cầu thận, Pt là áp suất thủy tĩnh của bao Bowman
π GC là áp suất keo của mao mạch cầu thận, và
π T là áp suất keo của dịch lọc bao Bowman

GFR.png

Chú ý: ở đây do protein bị ngăn chặn lọc qua màng lọc nên lượng protein hay là áp suất keo ở bao Bowman là không đáng kể. Còn lại 3 thành phần (trong đó chỉ có áp suất thủy tĩnh của mao mạch cầu thận là thuận lợi cho sự lọc, hai thành phần còn lại thì chống lại sự lọc). Điểm đặc biệt là áp suất keo ở mao mạch cầu thận là 32 mmHg, cao hơn áp suất keo của động mạch cơ thể – chỉ là 25 (do 20% lượng huyết tương qua cầu thận được lọc, trong khi protein lại không qua được màng lọc).

a) Tính thấm

Tính thấm của mao mạch cầu thận khoảng 50 lần mao mạch ở cơ bắp. Các chất trung tính với đường kính nhỏ hơn 4 nm thì được lọc từ do, nhưng nếu đường kính hơn 8 nm thì sự lọc gần bằng 0 (giữa hai giá trị đường kính này, sự lọc tỉ lệ nghịch với đường kính).

Tuy nhiên các sialoprotein (là những glycoprotein chứa acid sialic) ở thành mao mạch cầu thận mang điện tích âm, và các nghiên cứu về dextran (đường đa, tạo bởi nhiều phân tử glucoz) điện tích âm và dương [biểu đồ đã minh họa ở trên] cho thấy rằng điện tích âm của màng lọc đẩy các chất mang điện tích âm trong máu –> sự lọc của chất mang điện tích âm đường kính 4 nm thì ít hơn một nữa so với chất trung tính cùng kích thước. Điều này giúp ta giải thích được trường hợp đối với albumin (nồng độ trong cầu thận của nó chỉ là 0.2%). Ngược lại tỉ lệ lọc các chất mang điện tích dương thì lớn hơn chất trung tính. Số lượng protein nước tiểu bình thường ít hơn 100 mg/ngày, phần lớn không được lọc, một số tạo ra từ các ống thận (điều này giải thích tình trạng protein/albumin niệu có thể xảy ra không phải do tăng kích thước các lỗ ở màng lọc mà là do chính nguyên nhân này).

b) Kích thước giường mao mạch

Renal_corpuscle.svg.png

Kf có thể thay đổi bởi các tế bào mesangial (5a 5b trong hình minh họa, là các tế bào cơ trơn biệt hóa quanh mạch máu thận), sự co của chúng làm giảm diện tích lọc do đó làm giảm Kf. Theo như định nghĩa (Kf là mức lọc cầu thận đối với 1 mmHg áp suất) thì ta có thể dễ nhận ra được rằng khi mà các tế bào này co sẽ gây hẹp lòng mạch, dẫn đến (1) tăng kháng lực mạch máu/ tăng huyết áp và (2) giảm lọc ở cầu thận (do giảm tưới máu thận) –> giảm Kf. Dưới đây là các tác nhân tác động lên các tế bào mesangial:

bảng 4.png

c) Áp suất keo và áp suất thủy tĩnh

Áp lực mao mạch cầu thận thì cao hơn các giường mao mạch khác do 2 điểm: (1) động mạch đến là các nhành thẳng, ngắn của động mạch gian tiểu thùy, (2) động mạch đi với kháng lực cao.

Áp suất thủy tĩnh của mao mạch chống lại với áp suất thủy tĩnh của bao Bowman, Tương tự như với áp suất keo, tuy nhiên ở đây áp suất keo dịch lọc không đáng kể do đó hiệu số áp suất keo giữa mao mạch và bao Bowman tương đương với áp suất keo của mao mạch.
Một điểm cần lưu ý là áp suất thủy tĩnh của bao Bowman ít thay đổi nên không ảnh hưởng. Tuy nhiên trong trường hợp tắc ống thận/niệu quản, hay phù thận sẽ làm áp suất bao Bowman tăng lên gây giảm lọc.

3. Thay đổi GFR

b5.png

– Áp suất máu hệ thống tăng thì làm tăng áp suất thủy tĩnh mao mạch à tăng lọc. Tuy nhiên sự tăng là không cân xứng, do cơ chế tự điều hòa (khi mà áp suất động mạch tăng sẽ có các cơ chế làm co tiểu động mạch đến để hạn chế dòng máu tới quá mức).

– Dòng máu thận được giữ tường đối hằng định, do cơ chế tự điều hòa: điều hòa ngược cầu ống (tubuloglomerular feedback: Khi nồng độ Na+, Cl- tới quai Henle giảm –> kích thích macula densa gây giãn tiểu động mạch vào và kích thích các tế bào cận tiểu cầu tiết renin, tạo ra angiotensin II làm co tiểu động mạch ra, 2 cơ chế này làm GFR tăng lên), nghĩa là khi mà mức lọc giảm cơ chế điều hòa này làm giãn động mạch đến. Như vậy dòng máu thận và mức lọc tiểu cầu đều được tăng lên và về mức bình thường.

– Sự co giãn của các tiểu động mạch: động mạch đến nếu giãn sẽ làm tăng dòng máu tới thận và lọc tăng, ngược lại. Đối với động mạch đi, sự co làm tăng áp suất thủy tĩnh mao mạch cầu thận do đó làm tăng lọc (tuy nhiên nếu co mạnh lâu quá thì sẽ giảm lọc vì lúc đó protein ứ lại làm tăng sáp suất keo).

– Trường hợp phù thận và tắc niệu quản thì đã trình bày ở trên, gây giảm lọc.

– GFR cũng phụ thuộc vào Kf.

– Một số yếu tố khác cũng đã trình bày ở trên.

4. Tỉ lệ lọc cầu thận

Là tỉ lệ của GFR (~125 mL.phút) với dòng huyết tương qua thận (renal plasma flow – RPF (~ 650 mL/phút), khoảng 16-20%. GFR thay đổi ít hơn RPF :khi có sự giảm huyết áp hệ thống, GFR giảm ít hơn là RPF do sự co động mạch đi, do đó tỉ lệ lọc tăng lên.

Tài liệu tham khảo:
– Ganongs Review of Medical Physiology, 24th
– Guyton and Hall Textbook of Medical Physiology, 12th
– Sinh lý học y khoa của GS. Phạm Đình Lựu

Bài viết của thành viên conan274318_SM

Hãy vào đây để thảo luận nhiều hơn về vấn đề này!

Tiến trình cân bằng acid – base ở ống thận

(Bài viết do thành viên biên soạn, nếu có sai sót xin nhận được góp ý tại đây).

Hai cơ chế chủ yếu để thực hiện chức năng cân bằng acid – base ở thận bao gồm: Tái hấp thu HCO3- đã lọc và Bài tiết H+ cố định.

1) Tái hấp thu HCO3- đã lọc: (Reabsorption of filtered HCO3-)

– Xảy ra chủ yếu ở ống lượn gần

a. Các đặc điểm then chốt của việc tái hấp thu HCO3- đã lọc:

– H+ và HCO3- được tạo ra trong những tế bào của ống lượn gần từ CO2 và H2O. CO2 và H2O dưới sự xúc tác của enzyme CA (carbonic anhydrase) nội bào, tạo thành H2CO3. Sau đó nó phân ly thành H+ và HCO3-, H+ thì được tiết vào bên trong lòng ống thông qua cơ chế trao đổi H+ và Na+ tại thành của lòng ống. Còn HCO3- thì được hấp thu vào máu qua 2 cơ chế: đồng vận HCO3- với Na+ và cơ chế trao đổi HCO3- với Cl-.

1.png

-Trong lòng ống, H+ được bài tiết kết hợp với HCO3- đã được lọc (filtered HCO3-) để tạo thành H2CO3, sau đó sẽ phân ly thành CO2 và H2O dưới sự xúc tác của enzyme CA bờ bàn chải (brush border CA). Tiếp theo đó là CO2 và H2O sẽ khuếch tán vào bên trong tế bào để bắt đầu lại chu trình.

– Kết quả của quá trình trên là: có sự tái hấp thu HCO3- thực (net reabsorption). Tuy nhiên, không có sự bài tiết thực của H+ (do H+ đã được tái hấp thu sau khi bài tiết vào lòng ống để bài tiết tiếp sau đó).

b. Điều hòa việc tái hấp thu HCO3- đã lọc:

– Filtered load (mình không biết dịch thế nào là chính xác, nên tạm dịch là tải trọng lọc): khi tăng tải trọng lọc dẫn đến tăng tốc độ tái hấp thu HCO3-. Tuy nhiên, nếu nồng độ HCO3- quá cao (kiềm chuyển hóa), tải trọng lọc sẽ vượt qua khả năng tái hấp thu và dẫn đến việc HCO3- sẽ bị thải ra nước tiểu.

– PCO2:

+Tăng PCO2 => tăng H+ nội bào => tăng bài tiết H+ ra lòng ống => tăng tái hấp thu HCO3-. Đây là cơ chế cơ bản để thận bù trừ khi nhiễm toan hô hấp (respiratory acidosis).

+Giảm PCO2 => giảm H+ nội bào => giảm bài tiết H+ ra lòng ống => giảm tái hấp thu HCO3-. Đây lại là cơ chế cơ bản đề thận bù trừ khi nhiễm kiềm hô hấp (respiratory alkalosis).

Thể tích dịch ngoại bào (ECF volume: Extracellular Fluid Volume): liên quan đến isosmotic reabsorption.

+Khi ECF tăng => giảm tái hấp thu HCO3-.

+Khi ECF giảm => tăng tái hấp thu HCO3-.

Angiotensin II:

Kích thích sự trao đổi giữa Na+ và H+ tại thành của lòng ống => tăng tái hấp thu HCO3-.

2) Bài tiết H+ cố định:

– H+ cố định được tạo ra từ việc dị hóa protein và phospholipid được bài tiết bởi 2 cơ chế đó là thông qua dạng titratable acid (là H+ được thải ra với các chất đệm trong nước tiểu) và NH4+

a. Bài tiết H+ qua dạng titratable acid đó là H2PO4-:

Titratable acid được bài tiết xuyên suốt nephron nhưng chủ yếu ở trong các tế bào alpha xen giữa (alpha-intercalated cells) của phần cuối ống lượn xa và ống góp.

Số lượng H+ được bài tiết ở dạng này phụ thuộc vào số lượng đệm có trong nước tiểu (thường là HPO4[2-]) và pK của hệ đệm.

2.png

-H+ và HCO3- được tạo ra trong tế bào từ CO2 và H2O (xúc tác là enzyme CA nội bào). Phần H+ sẽ được tiết vào lòng ống bằng bơm H+ – ATPase hay H+ – K+ ATPase, và phần HCO3- sẽ được tái hấp thu vào trong máu bằng con đường trao đổi HCO3- với Cl- (HCO3- mới). Trong lòng ống, H+ sẽ kết hợp với HPO4[2-] để tạo thành H2PO4- để được bài tiết.

-H+ ATPase sẽ tăng hoạt động dưới tác dụng của Aldosterone.

-Kết quả của quá trình trên là: có sự bài tiết thực của H+ và đồng thời cũng có sự tái hấp thu thực của HCO3- mới tổng hợp.

-Do H+ được bài tiết trong nước tiểu nên pH của nước tiểu sẽ trở nên thấp dần và giá trị nhỏ nhất của pH nước tiểu là 4,4.

b. Bài tiết H+ qua dạng NH4+:

Ba phần của nephron tham gia vào bài tiết H+ qua dạng NH4+ đó là: ống lượn gần , phần dày đoạn lên của quai Henlé và các tế bào alpha xen giữa của ống góp.

Số lượng H+ được bài tiết qua dạng NH4 phụ thuộc vào cả số lượng NH3 được tổng hợp bởi tế bào thận và cả pH của nước tiểu.

3.png

-NH3 được tạo ra trong tế bào thận từ Glutamine. Sau đó nó khuếch tán theo gradient nồng độ ra khỏi tế bào vào bên trong lòng ống.

-H+ và HCO3- được tạo trong tế bào từ CO2 và H2O. Phần H+ được tiết vào trong lòng ống thông qua H+ ATPase hay H+ – K+ ATPase, sau đó sẽ kết hợp với NH3 để tạo NH4+ rồi được bài tiết ra ngoài với nước tiểu. Phần HCO3- sẽ được tái hấp thu vào máu (HCO3- mới).

-Lý do NH3 khuếch tán được từ tế bào vào trong lòng ống nhưng NH4+ không thể khuếch tán ngược lại là do NH3 là chất tan trong lipid nhưng NH4+ thì không.

-Khi pH của dịch trong ống càng thấp thì sự bài tiết H+ qua dạng NH4+ càng nhiều. Do ở pH thấp thì nhiều NH3 chuyển thành NH4+ và điều đó càng làm gia tăng gradient nồng độ cho NH3 khuếch tán.

-Khi bị toan hóa, sẽ xảy ra sự gia tăng tổng hợp NH3 để thích nghi và cơ chế là làm gia tăng sự bài tiết H+.

-Tăng Kali huyết sẽ ức chế tổng hợp NH3 => giảm bài tiết H+ và ngược lại khi giảm Kali huyết. Cơ chế là do có sự trao đổi giữa H+ và K+ tại màng tế bào thận, khi tăng Kali huyết, Kali sẽ gia tăng đi vào và H+ vì thế sẽ gia tăng thoát ra khỏi tế bào thận => tăng pH trong tế bào thận => ức chế sự tổng hợp NH3 từ Glutamine và ngược lại.

Tham khảo:
BRS Physiology 5th (Renal and Acid Base Physiology)
Physiology 4th Linda Costanzo (Renal Mechanisms in Acid Base Balance)

 

Bài viết của thành viên KEN – DSYS

Xem thêm và thảo luận tại đây.

Sự cân bằng giữa các yếu tố bảo vệ và tấn công dạ dày – ruột

Dạ dày là 1 phần của ống tiêu hoá mà có chức năng chính là lưu trữ tạm thời thức ăn. Ngoài ra dạ dày còn tiết enzyme tiêu hoá sơ bộ protein và axit HCl để khởi đầu quá trình tiêu hoá protein. Câu hỏi đặt ra ở đây là: làm cách nào dạ dày lại không bị phá huỷ bởi chính chất tiết của nó (HCl, pepsin)?

Các yếu tố bảo vệ và tấn công dạ dày.

[IMG]

a) Các yếu tố bảo vệ:

+ Lớp chất nhầy: có thành phần là chủ yếu là mucin (glycoprotein cao phân tử), phospholipids, chất điện giải và nước (chiếm 95%). Lớp chất nhầy này được tiết ra từ 3 loại tế bào tiết nhầy khác nhau là surface mucous cells (trên bề mặt dạ dày), mucous neck cells (ở vị trí mà gastric pit nối liền với gastric gland)glandular mucous cells (ở gastric gland trong hang vị). Nhiệm vụ của nó là hình thành một hàng rào bảo vệ, ngăn cách biểu mô dạ dày với chất phá huỷ.
[IMG]

+ HCO3- : được tiết ở cả tế bào biểu mô thân vị và hang vị. Mặc dù sự tiết HCO3- là thấp so với sự tiết axit, nhưng HCO3- đóng một vai trò cực kì quan trọng trong việc duy trì pH lớp chất nhầy ~ 7.0. Chúng trung hoà axit khuếch tán vào lớp nhầy trước khi axit có thể “chạm tới” tế bào biểu mô. Hơn thế nữa, nếu pepsin “chui vào” lớp nhầy này, nó sẽ bị bất hoạt (inactivated) bởi vì đây là môi trường kiềm (nồng độ HCO3- cao).

+ Prostaglandins: đóng vai trò chính trong việc duy trì tình trạng nguyên vẹn của lớp chất nhầy(lớp nhầy liên tục bị bào mòn và được tái tạo liên tục – chúng không “tĩnh” – static). Ví dụ, prostaglandins ngăn chặn hay làm đảo ngược tổn thương thứ phát gây ra bởi salicylatesmuối mật và ethanol. Hiệu quả bảo vệ của prostaglandins là kết quả của nhiều hoạt động bao gồm khả năng ức chế sự tiết axit, kích thích tiết cả HCO3- và chất nhầy, tăng lưu lượng máu đến niêm mạc, làm giảm nhẹ đáp ứng viêm tại chỗ gây ra bởi axit và tái tạo tế bào biểu mô dạ dày.

+ Mucosal blood flow (lưu lượng máu đến niêm mạc): đóng vai trò vận chuyển các chất dinh dưỡng và oxy cho quá trình tái tạo lại tế bào bị phá huỷ, cũng như loại bỏ các chất độc hại trong quá trình chuyển hoá.

+ Growth factors (yếu tố tăng trưởng): bao gồm EGF (Epidermal Growth Factor), TGF(Transforming Growth Factor) α và FGF (Fibroblast Growth Factor) điều biến quá trình phục hồi.

*Nếu tế bào biểu mô dạ dày chỉ bị phá huỷ ít, các tế bào bên cạnh vết thương đó có thể di trú qua bù đắp lại, phục hồi lại vết thương đó (restitution). Nhưng nếu sự phá huỷ lớn mà sự bù đắp không hiệu quả thì cần phải gia tăng sản sinh tế bào (proliferation). Lúc này prostaglandins và EGF, TGF-α sẽ điều hoà quá trình đó.

b) Các yếu tố tấn công:

+ H+ và pepsin: Khi bị kích thích, tế bào thành (parietal cell) tiết 1 dung dịch axit mà chứa khoảng 160mmol/l HCl (pH của dung dịch này ~ 0.8!). Khi pepsinogen đầu tiên được tiết ra, nó chưa có tác dụng tiêu hoá protein ngay. Tuy nhiên, ngay khi tiếp xúc với dung dịch axit HCl, nó biến thành dạng hoạt động là pepsin. Chức năng của pepsin là tiêu hoá trực tiếp protein thành các chuỗi peptide nhỏ hơn để các enzyme tiếp theo của tuỵ làm việc dễ dàng hơn.
Thử tưởng tượng, nếu dạ dày không có được cơ chế bảo vệ liên tục, liệu nó có thể “trụ vững” trước 2 “sát thủ” này không!!!

+ Ngoài ra còn có các tác nhân tấn công dạ dày khác, mà tiêu biểu nhất có lẽ là Helicobacter pylori (Hp). 
[IMG]

Sau khi xâm nhập cơ thể, Helicobacter pylori sẽ chui vào lớp nhầy bảo vệ niêm mạc dạ dày, tại đây chúng tiết ra những chất làm kích thích dạ dày tiết nhiều acid hơn. Không những thế chúng còn làm suy yếu lớp nhầy bảo vệ và tiết ra một số độc tố làm tổn thương các tế bào nằm bên dưới lớp nhầy. Do đó niêm mạc dễ dàng bị ăn mòn bởi chất acid có trong dịch tiêu hóa của dạ dày, gây ra viêm loét dạ dày hay tá tràng. (*)

+ Thuốc kháng viêm không chứa steroid (NSAIDs): Nhắc lại một chút, như đã nói ở trên,prostaglandins đóng vai trò chính trong việc sửa chữa, duy trì lớp chất nhầy. Prostaglandins có nguồn gốc từ arachidonic acid trên màng tế bào.
[IMG]

Enzyme chính trong việc tổng hợp prostaglandins là cyclooxygenase (COX). Nó có 2 đồng dạng là COX-1 và COX-2.

Enzyme COX-1 được biểu lộ trong các mô, bao gồm dạ dày, tiểu cầu, thận và các tế bào nội mô. Phân tử đồng dạng đóng một vai trò quan trọng trong việc duy trì tính toàn vẹn của chức năng thận, tập kết tiểu cầu, và sự nguyên vẹn của lớp nhầy ống tiêu hoá (vì chúng sinh tổng hợp prostaglandins mà có nhiệm vụ duy trì lớp nhầy).

Ngược lại enzyme COX-2 được biểu lộ khi có kích thích viêm, tổng hợp PGI2, PGE2 -> đáp ứng viêm. Chúng có trong đại thực bào (macrophage), bạch cầu (leukocyte), nguyên bào sợi (fibroblast) và những tế bào hoạt dịch (synovial cells).

Mặt lợi ích của thuốc NSAIDs là ức chế COX-2 trong mô viêm. Nhưng đồng thời nó cũng ức chế luôn COX-1, dẫn đến loét niêm mạc ống tiêu hoá hay rối loạn chức năng thận. Vì thế người ta đã chế tạo ra loại thuốc NSAIDs có tính chọn lọc cao với COX-2, tăng lợi ích làm giảm đáp ứng viêm và thu hẹp khả năng tổn hại ống tiêu hoá. Thế nhưng thuốc ức chế chọn lọc COX-2 đó lại có tác hại lên hệ tim mạch, làm tăng nguy cơ nhồi máu cơ tim (myocardial infarction).

Thêm một chút về sinh tổng hợp acid arachidonic:
[IMG]

Trong tế bào, acid arachidonic không tồn tại ở dạng acid béo tự do mà chủ yếu được este hoá trên màng phospholipids, phần lớn là trong hợp chất phosphatidylcholine và phosphatidylethanolamine. Acid arachidonic được tạo ra bằng cách: enzyme phospholipase A2 thuỷ phân liên kết este ở vùng “cleavage site”.

+ Stress: ảnh hưởng đến hệ thần kinh gây nhiều xáo trộn sinh lý trong cơ thể (có thể gây tăng tiết acid dạ dày dẫn đến loét dạ dày…)

+ Smoking (hút thuốc), alcohol (uống rượu): trong khói thuốc và rượu có nhiều chất độc hại, làmtrầm trọng thêm tình trạng viêm loét, gây đáp ứng viêm với những tế bào dưới niêm mạc, từ đó ảnh hưởng đến hoạt động bình thường của dạ dày.

Sự cân bằng giữa 2 yếu tố bảo vệ và tấn công phía trên giúp dạ dày “an toàn” trong điều kiện khắc nghiệt (pH trong lòng dạ dày có thể bằng 1 hoặc thấp hơn).
Tuy nhiên khi lớp nhầy bảo vệ biến mất (1) hay tiết quá nhiều H+ và pepsin (2) hoặc cả (1) và (2) thì sẽ dẫn đến bệnh loét dạ dày, tá tràng (tuỳ theo vị trí giải phẫu mà loét có thể ở dạ dày, tá tràng hoặc cả hai).

Nguồn trích dẫn:
(*)http://www.bvdaihoc.com.vn/bv/news.asp?bvdh.umc=Details&action=109
Harrison’s Principles of Internal Medicine 18th. Part 14 Disorders of the Gastrointestinal System.
Ganong’s Review of Medical Physiology, 23rd 2010 (LANGE Basic Science)
Medical Physiology, Walter F.Boron, Emile L.Boulpaep

 – drDream – Thành viên diễn đàn Đọc sách Y sinh.

Xem thêm thảo luận tại đây.

Ca2+/TI THỂ VÀ HOẠT ĐỘNG TẾ BÀO

Ca2+/TI THỂ VÀ HOẠT ĐỘNG TẾ BÀO

Phùng Trung Hùng – Nguyễn Phước Long

Đại cương

Tế bào Eukaryote dự trữ Ca2+ trong lòng sarco/endoplasmic reticulum (SR/ER) và ở trong bộ Golgi. Ca2+ trong các bào quan cần thiết cho quá trình thủy phân ATP dưới xúc tác của SR/ER ATPase (SERCA) và Secretory pathway Ca2+-ATPase (SPCA), do vậy nồng độ của Ca2+ rất dao động, từ  µM đến mM, đủ tạo ra thêm một thành phần gradient điện thế nội bào. Sự phóng thích Ca2+ được thực hiện bởi các kênh ion không đặc hiệu, bao gồm thụ thể của 1,4,5 trisphosphate (InsP3R) và thụ thể ryanodine (RyR, đặc biệt là ở cơ vân và cơ tim) trong lộ trình tín hiệu của inSP3 (một phân tử truyền tin thứ 2) hoặc cADP ribose, cADPR đối với RyR và cuối cùng là bởi các kênh Ca2+ cảm ứng điện thế nằm trên màng (tế bào cơ). Các bào quan khác như ti thể, peroxisomes, các túi tiết, nhân, cùng với các Ca2+ binding protein ở trong bào tương hiệp đồng tạo ra sự biến đổi nồng độ của Ca2+ nội bào, tạo ra các quá trình điều hòa Ca2+ rất chặt chẽ. Những tri thức cơ bản về lộ trình tín hiệu của Ca2+ đã được đề cập ở một chương riêng. Ở chương này, chúng ta sẽ chỉ đề cập đến vai trò của Ca2+/ti thể mà thôi.

Hình 39.1: Na+/Ca2+ exchanger (NCX) và uniporter ti thể là các bơm Ca2+ hiệu quả khi nồng độ Ca2+ bào tương tăng cao do có năng lực bơm cao và ái lực với Ca2+ thấp. PMCA (plasma membrane Ca2+-ATPase) và SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) có khả năng bơm thấp hơn nhưng ái lực lại cao hơn nên có thể đưa Ca2+ về lại nồng độ của trạng thái nghỉ.

Như chúng ta đã biết, ti thể là một bào quan có khả năng “thiên bẩm” trong việc đáp ứng với các lộ trình tín hiệu Ca2+ và cả góp phần kiểm soát hay giải mã (decode) nó. Do vậy, Ca2+ tự thân nó rất cần thiết cho chức năng của ti thể: 3 enzyme dehydrogenase của vòng Krebs (pyruvate dehydrogenase, α-ketoglutarate dehydrogenase và isocytrate dehydrogenase) đều được hoạt hóa bởi Ca2+. Trong chuỗi truyền điện tử, F1F0 ATPase và ATP translocator được điều hòa bởi Ca2+. Vì chức năng của Ca2+ quan trọng như vậy, nên các cơ chế nhằm kiểm soát Ca2+ là cần thiết để tạo ra các đáp ứng khác nhau, đôi khi ngược hẳn nhau: tạo ra năng lượng hay tham gây ra apoptosis. Điều cuối cùng ta cần biết ở đây nữa là ti thể không phải chịu sự chi phối hoàn toàn của Ca2+ mà ngược lại, nó sử dụng Ca2+ như phương tiện giao tiếp với các thành phần khác của tế bào. Vậy nên ta có thể xem Ca2+ là ngôn ngữ chung của chúng.

Chúng ta sẽ cùng nhau nói về vai trò của Ca2+ trên cương vị phân tử điều biến hoạt động của ti thể và vai trò của ti thể như một bào quan điều biến hoạt động của tế bào phụ thuộc Ca2+.

Hình 39.2: Ti thể được năng lượng hóa nhờ pyruvate – phân tử khi vào ti thể sẽ chuyển hóa theo chu trình TCA và qua chuỗi truyền điện tử tạo năng lượng. Như chúng ta đã thảo luận ở một chương riêng, sự chênh lệch điện thế giữa màng ngoài và màng trong ti thể là từ -150 đến -180 mV, tạo thuận lợi để tạo ATP và hấp thu Ca2+. Sơ đồ trên mô tả khái quát mối liên hệ giữa chuyển hóa của ti thể và lộ trình tín hiệu Ca2+.

 

Các diễn viên chính trong vở kịch của Ca2+ ti thể

Từ những năm 60 của thế kỉ trước, hàng loạt các nghiên cứu về vai trò của ti thể được tiến hành. Mục tiêu cuối cùng, lớn nhất, là tìm cho bằng được các protein tải Ca2+ của ti thể. Trong suốt 50 năm nghiên cứu, người ta đã xác định được cơ chế Ca2+ đưa vào và đẩy ra ngoài ti thể một cách bao quát, chi tiết cách Ca2+ đi vào. Nhưng, mãi đến năm 2011, người ta mới biết được sự hiện diện của Na+/Ca2+ exchanger (một trong 2 hệ thống đưa Ca2+ ra ngoài). Trong suốt chặn đường từ trong chất nền ti thể đi ra ngoài bào tương hay ngược lại, Ca2+ phải vượt qua 2 chướng ngại làm giảm tính thấm của ion, đó là: lớp màng ngoài (OMM) và lớp màng trong (IMM).Màng ngoài có nhiều lỗ kênh (porines) và ngày trước, người ta cho rằng nó thấm tự do với Ca2+, nhưng theo các nghiên cứu từ năm 2006 trở lại đây, người ta ghi nhận được có sự hiện diện của các kênh chọn lọc anion phụ thuộc điện thế và sự tác động nhất định của nó đến tính thấm của Ca2+. Màng trong ti thể, như chúng ta đã biết, là một lớp màng không có tính thấm với ion và các phân tử chuyển hóa. Nó là nơi các phản ứng phosphoryl hóa oxi hóa xảy ra (vì nó có các phức hợp tham gia chuỗi truyền hô hấp) và cũng có các protein đảm bảo cho Ca2+ có thể đi vào và đi ra khỏi chất nền bên trong.

Hình 39.3: Cân bằng nội môi của Ca2+ ti thể ở trạng thái nghỉ. (a) Theo sau sự kích thích, sự mở kênh InsP3R và RyR. Các “diễn viên” tham gia quá trình tải Ca2+ được đề cập. VDAC – voltage-dependent anion channel; RaM – rapid mode of uptake, GRP75-glucose regulated protein 75, MPTP – mitochondrial permeability transition pore.

Quá trình đưa Ca2+ vào ti thể là một quá trình điện tính không phụ thuộc vào sự cân bằng gradient điện hóa. Bằng chứng là sự chuyển vị của H+ từ chất nền đến khoảng gian màng liên quan tới chuỗi truyền điện tử ở màng trong, nơi mà điện thế màng tế bào ở mức -180mV. Mức điện thế này tạo một lực để cho Ca2+ xâm nhập vào bên trong. Do vậy, ta cũng cần biết rằng, nếu không duy trì được nồng độ H+ cần thiết xuyên qua lớp màng trong, nghĩa là không tạo ra được sự chênh lệch điện thế đủ cao, quá trình hấp thu Ca2+ cũng sẽ không thể xảy ra.

Protein tải Ca2+ đơn độc (Ca2+ uniporter, MCU) được phát hiện năm 2004 và mãi đến năm 2011 mới xác định được nó có cấu trúc dạng lỗ (pore-forming channel), được cho là một cổng ion chọn lọc, có cơ chế hấp thu nhanh (rapid mode, RaM) – đóng vai trò cơ bản trong quá trình hấp thu Ca2+ của ti thể. Cơ chế đưa Ca2+ ra ngoài bao gồm 2 thành phần, có và không phụ thuộc vào Ca2+, biểu hiện bởi 2 loại protein tải là 3Na+/Ca2+ và 2H+/Ca2+ antiporter; đồng bộ với lực gây ra bởi sự di chuyển của H+ trong chuỗi hô hấp tế bào.

Hình 39.4: Nhiệt động học Ca2+ của ti thể và sự hoạt hóa chu trình TCA & phản ứng phosphoryl hóa oxy hóa.

Sự hấp thu Ca2+ ti thể

Năm 2004, người ta đã xác định được MCU là một kênh Ca2+ có tính chọn lọc rất cao với hằng số bán hoạt K0.5 là 19mM Ca2+, và vị trí hoạt hóa cũng chính là vùng tải. Chuỗi thứ tự tính thấm của protein này lần lượt làCa2+>Sr2+>Mn2+>Ba2+>Fe2+>La3+. Điểm thú vị là Ca2+ tự thân nó hoạt hóa MCU trong khi La, Mg2+, Ru đỏ (RR), KB-R7943 lại có vai trò ức chế. Một lần nữa ta lại nhìn thấy sự “đối đầu” của Mg2+ và Ca2+– một hiện tượng góp phần đáng kể trong quá trình điều hòa tác động của Ca2+. Ngoài ra, các polyamine được tin là đóng vai trò sinh lý quan trọng đối với Ca2+ vì nó giúp khởi động quá trình hấp thu Ca2+ của ti thể khi nồng độ Ca2+ tại đây ở mức thấp. Taurine ở mức mM cũng có thể hoạt hóa MCU. Điểm kì lạ nhất liên quan tới quá trình này liên quan đến các nucleotides, nó vừa có thể hoạt hóa, vừa có thể ức chế MCU và người ta cũng chưa rõ cơ chế tác động của nó như thế nào.

Hình 39.5: Ion calcium được vận chuyển trực tiếp giữa ER và ti thể tại “khớp nối” giữa 2 bào quan này. Quá trình chuyển đổi được điều hòa bởi thụ thể IP3 và các uniporter.

Khi nghiên cứu về các lộ trình tín hiệu có liên quan đến Ca2+, cụ thể là trường hợp của các phân tử ức chế p38 MAPK, người ta cũng đã phát hiện được rằng lộ trình tín hiệu phụ thuộc vào các protein kinase (tyrosine kinase, serine/threonine kinase,…) có vai trò điều biến dòng Ca2+ đi vào.

Như chúng ta đã biết, sự vận chuyển Ca2+ có liên quan đến sự vận động của H+. Vào năm 2007, người ta lại ghi nhận được sự vận chuyển của các ion H+ có liên quan đến các protein tải ion âm – trường hợp này là các acid hữu cơ, theo chiều từ chất nền ti thể ra khoảng gian màng. Vậy, cơ chế này cũng ảnh hưởng gián tiếp tới sự vận chuyển của Ca2+.

Đọc trọn vẹn bài viết tại đây.

CƠ CHẾ TRUYỀN TÍN HIỆU TẾ BÀO

CƠ CHẾ TRUYỀN TIN

Cơ sở sinh học phân tử tế bào

Phùng Trung Hùng – Nguyễn Phước Long

Chức năng của lộ trình tín hiệu tế bào là để chuyển thông tin từ ngoại vi tế bào đến các chất tác hiệu bên trong. Có nhiều cơ chế truyền tin mà nhờ đó thông tin được chuyển vào các lộ trình tín hiệu. Sau đây ta sẽ lần lượt tìm hiểu các cơ chế đó. Chi tiết từng quá trình sẽ được trình bày trong các chương sau.

Hình 40.1:Các mô hình truyền tin khác nhau.

Cơ chế conformational-coupling (sự gắn kết có biến đổi cấu dạng)

Thông tin có thể được chuyển từ một nguyên tố tín hiệu đến một nguyên tố tín hiệu tiếp theo nhờ vào quá trình conformational-coupling. Nếu những thành phần thường là protein này đã liên kết với thành phần khác thì cơ chế truyền tin sẽ xảy ra rất nhanh. Một ví dụ kinh điển cho cơ chế conformational-coupling là sự co và giãn cơ bám xương – nơi mà kênh CaV1.1 týp L sẵn sàng nối kết với thụ thể ryanodine (RYR1). Một ví dụ khác là sự kết hợp giữa kênh Ca2+ phụ thuộc điện thế với protein để đáp ứng với hiện tượng xuất bào của các túi synaptic.

Sự conformational-coupling cũng được dùng khi thông tin được chuyển đi bởi sự khuếch tán của các nguyên tố tín hiệu. Những phân tử truyền tin thứ hai có khối lượng phân tử thấp (Ca2+, cAMP, cGMP và ROS) hoặc các protein như ERK1/2 hay nhiều yếu tố phiên mã được hoạt hóa khác di chuyển từ tế bào chất vào nhân mang theo thông tin trong suốt quá trình di chuyển trong tế bào chất của chúng. Trong quá trình chuyển giao thông tin này, những nguyên tố có khả năng khuếch tán này sử dụng cơ chế conformational-coupling để truyền thông tin khi nó gắn vào các yếu tố thuận dòng khác.

Post-translational modifications (Điều hòa hậu dịch mã)

Hệ thống thông tin sử dụng rất nhiều protein post-translational modification để chuyển thông tin trong suốt lộ trình tín hiệu. Cơ chế cơ bản là khi chất kích thích hoạt hóa thành phần A, thành phần A này sau đó sẽ hoạt động trên thành phần B để tạo ra sự biến đổi cấu trúc trong suốt sự điều chỉnh. Sự điều chỉnh này thực hiện chức năng truyền tin của nó và thông thường rất chuyên biệt do vậy nó trực tiếp thay đổi cấu trúc các tiểu phân amino acid trên protein bằng các cách sau đây:

–          Phosphoryl hóa protein.

–          Oxi hóa protein.

–          Acetyl hóa protein.

–          Methyl hóa protein.

–          Sumoyl hóa.

–          Ubiquitin hóa. (đã được trình bày ở một chương khác)

Sự phosphoryl hóa protein

Protein kinase và phosphatase biến đổi hoạt tính của protein bằng cách gắn hoặc loại bỏ góc phosphate. Tế bào biểu hiện một lượng khổng lồ các protein kinase đáp ứng cho các thành phần tín hiệu như là một cơ chế truyền tin chính. Trong một vài trường hợp, các kinase có thể phosphoryl hóa lẫn nhau để tạo ra một dòng thác tín hiệu. Ví dụ kinh điển cho trường hợp này là lộ trình tín hiệu MAPK. Các kinase được chia thành hai nhóm chính phụ thuộc vào tiểu phân amino acid nó phosphoryl hóa gồm có: Tyrosine kinase và serine/threonine kinase. Những kinase này có nhiều hình dạng khác nhau và đều là một thành phần chức năng không thể thiếu của các thụ thể trên màng tế bào. Ngoài ra, các kinase không phụ thuộc thụ thể cũng có tác dụng trong nhiều vùng khác nhau của tế bào.

Các kinase này có thể trở thành yếu tố khởi phát cho một lộ trình tín hiệu của các thụ thể tyrosine kinase và serine/threonine kinase.

Phần lớn các kinase không liên quan đến thụ thể nhưng hoạt động trong tế bào như một phần của dòng thác tín hiệu nội bào. Họ Src, Lck, Lyn, Fyn và Syk là những kinase không liên quan đến thụ thể là thành phần quan trọng trong các lộ trình tín hiệu của tế bào T và dưỡng bào. Họ Tec tyrosine kinase cũng đóng vai trò quan trọng trong sự truyền tin sớm của lymphocyte.

Hầu hết các lộ trình tín hiệu sử dụng non-receptor serine/threonine protein kinase như một vài chặn trong suốt quá trình truyền tin. Sau đây là vài ví dụ về những kinase quan trọng:

–          AMP-activated protein kinase (AMPK)

–          β-adrenergic receptor kinase 1 (βARK1)

–          Casein kinase I (CKI)

–          CDK-activating kinase (CAK)

–          Cyclin-dependent kinase (CDKs)

–          cGMP-dependent protein kinase (cGK)

–          DNA-dependent protein kinase (DNA-PK)

–          Glycogen synthase kinase-3 (GSK-3)

–          Integrin-linked kinase (ILK)

–          LKB1

–          Myosin light chain kinase (MLCK)

–          Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK)

–          p21-activated kinase (PAK)

–          PKA

–          PKB

–          PKC

–          Rho kinase (ROK)

–          Polo-like kinase (Plks)

–          Ribosomal S6 kinase 1 (S6K1)

–          WNK protein kinase

Non-receptor protein tyrosine kinase

Có nhiều loại kinase thuộc nhóm này với nhiều chức năng thông tin quan trọng. Chúng có vùng tyrosine kinase, có chứa vùng tương tác protein nên có thể tương tác với cả các yếu tố tín hiệu thuận dòng hoặc nghịch dòng. Kinase Src có vai trò quan trọng nhất trong hình thức truyền tin này nên sẽ được trình bày tại đây.

Hình 40.2: Sự hoạt hóa Src. (1) Loại bỏ nhóm phosphate ở đầu C để hoạt hóa phân tử. (2) Tyrosine kinase phosphoryl hóa vùng kinase để tăng hoạt tính enzyme. (3) vùng kinase hoạt hóa có thể phosphoryl hóa nhiều protein đích như Abl chẳng hạn. (4) Vùng SH2 và SH3 có thể gắn vào nhiều protein đích khác nhau. (5) CSK phosphoryl hóa trở lại tyrosine ở đầu C để bất hoạt phân tử.

Src

Src là một nguyên mẫu của họ Src protein tyrosine kinase (Src, Blk, Fyn, Fgn, Hck, Lck, Lyn, Yes). Những tyrosine kinase này vừa là một chất đáp ứng vừa là một phân tử thực hiện chức năng phosphoryl hóa các phức hợp tín hiệu. Cấu trúc này có những vùng vai trò là chất đáp ứng đối ngẫu (dual adaptor) và enzyme.Lưu ý, các kinase này gắn vào màng tế bào ở đầu tận N, liên tục với vùng Src homology 3 (SH3) và vùng SH2. Vùng kinase ở đầu tận C có hai amino acid tyrosine (Tyr-416 và Tyr-527) có chức năng điều hòa hoạt động của Src. Vùng SH2 không chỉ giúp cho Src tương tác với những phân tử tín hiệu khác mà còn tham gia vào các tương tác nội phân tử để điều hòa hoạt tính của Src. Các quá trình điều hòa của Src xảy ra như sau:

–          Ở trạng thái bất hoạt, Tyr-527 được phosphoryl hóa nằm ở đầu C tạo thành mối tương tác nội phân tử với vùng SH2. Trong suốt quá trình hoạt hóa, tyrosine phosphatase loại bỏ nhóm phosphate ức chế này và phân tử được hoạt hóa.

–          Nhiều loại tyrosine kinase sẽ phosphoryl hóa Tyr-416 ở vùng kinase dẫn đến tăng hoạt tính của enzyme.

–          Vùng tyrosine kinase đã hoạt hóa có khả năng hoạt hóa nhiều cơ chất khác nhau như Abl chẳng hạn.

–          Khi ở trạng thái hoạt hóa, vùng SH2 và SH3 có thể tương tác với nhiều protein đích để thu thập các phức hợp thông tin.

–          Src bị bất hoạt bởi C-terminal Src kinase (CSK) do enzyme này phosphoryl hóa Tyr-527 để đưa phân tử này trở về trạng thái bất hoạt.

Chức năng của Src:

–          Hoạt hóa non-receptor protein tyrosine kinase Abl.

–          Cùng hoạt động với proline-rich tyrosine kinase 2 (Pyk2) để đẩy mạnh hình thành của podosome hủy cốt bào.

–          Đóng vai trò chuyển tiếp thông tin từ thụ thể integrin đến PtdIns 3-kinase tại phức hợp focal adhesion.

–          Trong quá trình tạo hủy cốt bào, colony-stimulating factor-1 (CSF-1) hoạt động trên thụ thể CSF-1R và bổ sung Src để hình thành phức hợp với c-Cbl và PtdIns 3-kinase. Src cũng phosphoryl hóa các motif hoạt hóa thụ thể miễn dịch theo cơ chế tyrosine (ITAMs) điển hình trên thụ thể FcRγ và chất đáp ứng DNAx-activating protein 12 (DAP12) để đồng hoạt lộ trình tín hiệu Ca2+ trong sự phát triển của hủy cốt bào.

–          Nó phosphoryl hóa và hoạt hóa họ Tec tyrosine kinase.

Chức năng của Abl (Abelson tyrosine kinase):

–          Abl trong bào tương được hoạt hóa bởi Src liên kết với một thụ tyrosine kinase-linked receptor như PDGFR chẳng hạn. Src phosphoryl hóa Abl và giúp phân tử này thực hiện chức năng tái cấu trúc sợi actin. Abl có thể gắn vào actin G- và F- nhưng cơ chế đến nay vẫn chưa rõ.

–          Abl cũng có thể bị hoạt hóa bởi thụ thể integrin và tại đây nó có thể tập hợp actin bằng cách hình thành phức hợp với Abelson-interactor (Abi), Wiskott-Aldrich syndrome protein (WASP) verprolin homologous (WAVE) và phức hợp actin-related protein 2/3 (Arp2/3 complex). Sự hình thành phức hợp này được thấy trong phức hợp focal adhesion.

Hình 40.3: Chức năng của Abl ở tế bào chất và trong nhân.

–          Ngoài ra, Abl cũng có thể hoạt động trong nhân. Tại đây, chức năng của nó được cho là phụ thuộc vào khả năng tương tác của nó với pocket protein retinoblastoma susceptibility gene Rb.

–          Tác dụng ức chế của Rb sẽ mất đi khi nó được phosphoryl hóa bởi phức hợp cyclin D/cyclin dependent kinase 4 (CDK4) – đây một thành phần của lộ trình tín hiệu chu kì tế bào.

–          Abl trong nhân cũng có thể được hoạt hóa bởi nhiều tác nhân kích thích stress như là hoạt động bức xạ ion hóa của ATM (ataxia telangiectasia mutated) hay sự thương tổn của DNA qua DNA-dependent protein kinase (DNAPK).

–          Abl inhibition of mouse double minute-2 (MDM2) ngăn cản sự thoái giáng của p53 do ubiquitin ligase mouse double minute-2 (MDM2) và quá trình này giúp tăng cường sự phiên mã của gene gây apoptosis.

–          Abl có thể phosphoryl hóa và hoạt hóa RNA polymera II góp phần vào quá trình biểu hiện gene.

–          Abl có thể phosphoryl hóa và hoạt hóa Rad52 góp phần vào quá trình sữa chữa DNA.

Sự oxi hóa protein

Lộ trình tín hiệu redox sinh ra các góc oxy hoạt động như superoxide và hydrogen peroxide để tạo ra các phân tử truyền tin thứ hai của nó hoạt động bằng cách oxi hóa nhóm thiol đặc hiệu trên amino acid cysteine ở protein đích.

Sự acetyl hóa protein

Quá trình này đóng một vai trò quan trọng trong hiện tượng tái cấu trúc chromatin và liên quan đến sự hoạt hóa quá trình phiên mã. Histone acetyltransferase (HATs) có chức năng acetyl hóa histone để tháo xoắn chromatin, làm cho nó dễ dàng tiếp cận với nhiều yếu tố phiên mã và do vậy hoạt hóa quá trình này. Hoạt động của myocyte enhancer factor-2 (MEF2) là một ví dụ điển hình cho quá trình acetyl hóa và phản ứng khử acetyl hóa được thực hiện bởi histone deacetylase (HDACs) và sirtuins.

Sự methyl hóa protein

Chức năng của protein có thể thay đổi bởi sự methyl hóa arginine hay lysine bởi enzyme protein arginine methyltransferase (PRMTs) và Smyd-2. Các phản ứng methyl hóa này sẽ bị đảo ngược bởi các enzyme demethylase như histone lysine-specific demethylase (LSD1) có chức năng loại nhóm methyl khỏi p53.

Quá trình này điều hòa nhiều protein và các quá trình của tế bào, cụ thể như:

–          Thay đổi hoạt tính của transcriptional regulator peroxisome-proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) trong quá trình kiểm soát sự biệt hóa của tế bào mỡ nâu.

–          Sự methyl hóa protein p53 là một quá trình điều hòa sự phiên mã gene.

–          Sự methyl hóa histone tại vị trí lysine và arginine tại đầu N của Histone H3 có thể có tác dụng rõ rệt đến cấu trúc của chromatin.

–          Chất đồng kiềm hãm switch independent (SIN3) có chức năng tái cấu trúc chromatin chứa một lượng lớn các phức hợp nhân (core complex) chứa nhiều methyl transferase như enzyme đặc hiệu cho histone H3 chẳng hạn.

Sự sumoyl hóa

Hiện tượng này là một ví dụ của cơ chế post-translation modification mà nhờ đó chức năng của protein được sửa đổi bởi các liên kết cộng hóa trị với “small ubiquitin related modifier” (SUMO). Sự gắn SUMO tạo ra một sự biến đổi trên hoạt tính, độ ổn định và vị trí của protein đích. Có 4 protein SUMO hiện diện ở người, 3 SUMO đầu hiện diện rộng khắp trong khi SUMO-4 giới hạn trong một số loại tế bào (thận, lách và hạch lympho). Trong hầu hết các trường hợp, 1 phân tử SUMO được gắn vào protein, nhưng cả hai phân tử SUMO-3 và SUMO-4 có thể tạo thành chuỗi SUMO nhờ khả năng tạo thành liên kết isopeptide giữa hai phân tử SUMO với nhau.

Đọc toàn bộ bài viết tại đây.

Chất cận tiết và do thần kinh tết ra ở thành dạ dày – ruột và bàn luận về SHPTTB

A. Các chất cận tiết:

Cùng với các hormone ở dạ dày-ruột (đã được tóm tắt trong bài viết trước), những chất cận tiết được tổng hợp trong những tế bào nội tiết của đường tiêu hóa. Tuy nhiên chúng không đi vào hệ tuần hoàn mà tác động tại chỗ, đến các tế bào đích lân cận của chúng bằng cách khuếch tán qua những đoạn đường ngắn trong dịch kẽ. Hoặc đôi khi chúng có thể được chuyên chở qua những đoạn đường ngắn trong mao mạch. Từ đó, đối với một chất có chức năng cận tiết, vị trí tác động của nó chỉ được cách vị trí bài tiết một khoảng cách ngắn. Điển hình của chất cận tiết là Somatostatin và Histamine.

1. Somatostatin:

– Là 1 peptide
– Được tiết ra từ các tế bào D của niêm mạc đường tiêu hóa
– Được kích hoạt bởi sự giảm pH trong lòng ống tiêu hóa
– Sự bài tiết somatostatin bị ức chế bởi sự kích thích dây X
– Tác động:
+ Ức chế sự phóng thích của tất cả hormone đường tiêu hóa
+ Ức chế sự bài tiết H+ của dịch vị bằng cách:
(1) trực tiếp ức chế sự bài tiết H+ thông qua protein Gi
(2) ức chế tế bào G ở hang vị bài tiết Gastrin
(3) ức chế tế bào ECL (enterochromaffin-like cell) tiết ra histamine
Untitled.jpg

Hình: Những tác nhân kích thích và ức chế sự bài tiết H+ từ tế bào thành của dạ dày (ACh: acetylcholine, M: muscarinic, CCK: cholecystokinin, ECL: enterochromaffin-like, cAMP: cyclic adenosine monophosphate, IP3: inositol 1,4,5-triphosphate) 

– Ngoài những chức năng cận tiết trên trong đường tiêu hóa, somatostatin còn được tiết ra từ vùng hạ đồi và từ các tế bào delta (delta cell) của tuyến tụy nội tiết.

2. Histamine:

– Không phải là peptide

– Được tiết ra từ các tế bào dạng nội tiết (tế bào ECL) của niêm mạc đường tiêu hóa, chủ yếu là trong vùng bài tiết H+ của dạ dày.

– Được kích hoạt khi có sự kích thích dây X của hệ phó giao cảm và khi có sự bài tiết gastrin. Sự gắn của acetylcholine lên thụ thể M3, của gastrin lên thụ thể CCKB cũng làm tăng khả năng gắn của histamine lên thụ thể H2.

– Tác động: cùng với gastrin và acetylcholine, histamine kích thích sự bài tiết H+ từ các tế bào thành của dạ dày.

B. Các chất tiết thần kinh:

Các chất tiết thần kinh là những peptide được tổng hợp trong thân các tế bào thần kinh của đường tiêu hóa. Một điện thế động trong tế bào thần kinh gây ra sự phóng thích các chất tiết thần kinh. Các chất tiết thần kinh khuếch tán qua synapse và tương tác với thụ thể trên tế bào sau synapse.

Những chất tiết thần kinh của đường tiêu hóa bao gồm: Acetylcholine (ACh), norepinephrine (NE), vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP) hay còn gọi là bombesin, enkephalins, neuropeptide Y, vàchất P.

1. Acetylcholine (ACh):

– Nguồn gốc: Từ tế bào thần kinh của hệ phó giao cảm

– Tác động:

+ Co thắt cơ trơn của thành ống tiêu hóa

+ Giãn các cơ thắt (sphincter)

+ Tăng tiết nước bọt, dịch vị và dịch tụy

2. Norephinephrine (NE):

– Nguồn gốc: Từ tế bào thần kinh của hệ giao cảm

– Tác động:

+ Giãn cơ trơn của thành ống tiêu hóa

+ Co các cơ thắt

+ Tăng bài tiết nước bọt

3.Vasoactive intestinal peptide (VIP):

– Nguồn gốc: Từ tế bào thần kinh của niêm mạc và cơ trơn

– Tác động:

+ Giãn cơ trơn

+ Tăng bài tiết dịch ruột và dịch tụy

4.Gastrin-releasing peptide (GRP) hoặc Bombesin:

– Nguồn gốc: Từ tế bào thần kinh của niêm mạc dạ dày

– Tác động: Tăng bài tiết Gastrin

5.Enkephalins:

– Nguồn gốc: Từ tế bào thần kinh của niêm mạc và cơ trơn

– Tác động:

+ Co thắt cơ trơn

+ Giảm bài tiết dịch ruột

6.Neuropeptide Y:

– Nguồn gốc : Từ tế bào thần kinh của niêm mạc và cơ trơn

– Tác động :

+ Giãn cơ trơn

+ Giảm bài tiết dịch ruột

7.Chất P :

– Nguồn gốc : được tiết ra cùng với ACh

– Tác động :

+ Co thắt cơ trơn

+ Tăng bài tiết nước bọt

C. Tổng kết :

Untitled 2.jpg
Hình: Phân loại những peptide đường tiêu hóa theo hormone, paracrine và neurocrine (R : receptor/thụ thể, GI: gastrointestinal tract)
THAM KHẢO: 
Linda Costanzo, BRS Physiology 5th Edition, Lippincott Williams & Wilkins, Philadelphia, USA 2011, trang 194,195.
Linda Costanzo, Physiology 4th Edition, Saunders, Inc., USA 2010, trang 330,331, 335.
Linda Costanzo, BRS Physiology Cases and Problems 4th edition, Lippincott Williams & Wilkins, Philadelphia, USA 2012 trang 255

Bài viết của DrDream

Đọc toàn bộ bài viết và bàn luận tại đây.

ĐẠI CƯƠNG VỀ GIAO TIẾP TẾ BÀO

ĐẠI CƯƠNG VỀ GIAO TIẾP TẾ BÀO

Trịnh Hoàng Kim Tú – Phùng Trung Hùng – Nguyễn Phước Long

Tín hiệu ngoại lai cần được chuyển đổi thành tín hiệu nội bào

Có một câu hỏi rất thú vị là: “Một tế bào “nói” (talking cell) sẽ bảo gì với một tế bào “nghe” (listening cell) – để sau đó tế bào nghe bằng cách nào trả lời lại thông điệp đó?”

Đầu tiên, chúng ta hãy tiếp cận với câu hỏi này bằng cách nhìn vào sự giao tiếp trong số những vi sinh vật – những vi khuẩn hiện đại hé mở của sổ về vai trò của dòng thác tín hiệu tế bào trong quá trình tiến hóa của sự sống trên Trái Đất.

Sự tiến hóa của dòng thác lộ trình tín hiệu tế bào

Hình 43.1: Quá trình tương tác giữa các tế bào men giao phối. Tế bào Saccharomyces cerevisiae sử dụng chất tín hiệuhóa học để định dạng tế bào có “mating type” đối lập, và khởi đầu quá trình giao phối này. 2 loại tế bào giao phối và phân tử tín hiệu hóa học tương ứng của chúng, hoặc các yếu tố giao phối, được gọi là  a.

Một chủ đề lớn của “cuộc trò chuyện giữa các tế bào” (cell conversation) là vấn đề “tình dục” (sex) – ít nhất đối với loài Saccharomyces cerevisiae, mà, người ta đã sử dụng để làm bánh mì, rượu, bia trong suốt thiên niên kỷ qua. Các nhà nghiên cứu đã biết rằng những tế bào này tìm “bạn tình” của mình bằng dòng thác tín hiệu hóa học (chemical signaling).

Có 2 loại “giới tính” của những “bạn tình” (cell of mating) này, được gọi là a và a. Tế bào loại a tiết ra phân tử tín hiệu (signaling molecule) được gọi là yếu tố a – có thể gắn kết với những thụ thể protein đặc hiệu gần tế bàoa. Cùng lúc đó, tế bào a tiết ra yếu tố a – gắn với thụ thể trên tế bào. Thật sự, không cần phải vào bên trong tế bào, 2 loại “mating factors” này khiến cho tế bào phát triển nghiêng về phía tế bào khác, và mang lại sự thay đổi cho tế bào khác. Kết quả tất yếu sẽ dẫn đến sự kết hợp, hay còn gọi là sự giao phối của 2 tế bào khác loại. Tế bào a/a  này chứa đựng tất cả các loại gene của 2 tế bào nguyên gốc, đây chính là sự kết hợp nguồn tài nguyên di truyền – mang lại những lợi ích cho các thế hệ tế bào sau ra đời từ quá trình phân chia tế bào.

Hình 43.2: Hoạt hóa lộ trình của NFkB bằng TNFa – Minh họa bước “xử lý tín hiệu sau giao tiếp tế bào”. Cả hai TNFa và thụ thể của nó đều là trimers. Sự gắn kết của TNFa gây nên sự atại sắp xếp (rearrangement) cuả các đuôi tế bào  kết cụm lại (clustered cytosolic tail) của thụ thể, bây giờ, thúc đẩy (recruit) đa dạng nhiều loại tín hiệu protein, đưa đến kết quả là sự hoạt hóa serine/threonine protein kinase có vai trò phosphoryl hóa (phosphorylate) và kích hoạt IkB kinase (IKK). IKK là một heterodimer bao gồm hai dưới đơn vị  kinase (IKKa và IKKb), và một dưới đơn vị điều hòa (regulatory subunit) có tên gọi là NEMO. IKKbsau đó phosphoryl hóa (phosphorylated) IkB trên 2 serine, đánh dấu protein cho sự “ubiquitin hóa” (ubiquitylation) và giáng cấp (degradation) trong proteasomes. NFkB được phóng thích ra và di chuyển vào trong nhân, ở đây, khi kết hợp với protein đồng hoạt hóa, nó kích hoạt sự sao chép xảy ra ở những gene đích.

Vậy thì, có phải tín hiệu giao phối (mating signal) của bề mặt tế bào men được thay đổi, hay còn gọi là chuyển đổi thành dạng chứa đựng những đáp ứng tế bào với việc giao phối?

Quá trình mà từ đó tín hiệu trên bề mặt tế bào được chuyển đổi thành đáp ứng đặc hiệu tế bào (bao gồm một chuỗi các bước) được gọi là lộ trình truyền tín hiệuNhiều lộ trình đã được nghiên cứu kỹ lưỡng với đối tượng là men và cả tế bào động vật. Kỳ diệu thay, khi xét đến chi tiết về mặt phân tử, lộ trình tín hiệu chuyên đổi của men và động vật có vú có những điểm tương tự đáng chú ý, mặc dù tổ tiên chung cuối cùng của 2 nhóm này đã sống cách đây hàng tỷ năm. Những điểm tương tự này và một số mới được phát hiện gần đây giữa hệ thống tín hiệu (signaling system) ở vi khuẩn và thực vật gợi ý rằng phiên bản mới nhất của cơ chế tín hiệu tế bào (cell-signaling mechanisms) được sử dụng ngày nay đã tiến triển tốt trước khi các sinh vật đa phân tử đầu tiên xuất hiện trên Trái Đất.

Các nhà khoa học nghĩ rằng những cơ chế tín hiệu đã phát triển đầu tiên hết ở các loài prokaryote cổ đại (sinh vật nguyên sinh). Sau đó được kế tục bởi các thế hệ sinh vật đa phân tử tiếp nối. Trong lúc ấy, tín hiệu tế bào (cell signaling) giữ vững vị trí quan trọng trong thế giới vi khuẩn. Tế bào của nhiều lòai vi khuẩn tiết ra các phân tử nhỏ – mà các phân tử này có thể được phát hiện bởi tế bào khác của vi khuẩn. Sự tập trung của các phần tử tín hiệu này cho phép vi khuẩn cảm giác được mật độ hiện tại của tế bào vi khuẩn, hiện tượng được gọi là quorum sensing (giao tiếp và biểu lộ hành vi thông qua phân tử tín hiệu). Sâu hơn nữa, tín hiệu giữa các thành viên trong quần thể vi khuẩn có thể dẫn đến việc kết hợp họat động của chúng lại với nhau. Đáp lại tín hiệu, tế bào vi khuẩn có thể đến gần nhau, tạo nên     biofilms – là sự tập hợp của vi khuẩn thường tạo nên các cấu trúc có thể nhận biết được và chứa đựng những vùng chức năng chuyên biệt. Ta sẽ có một hình cho thấy sự kết tập tiêu biểu khi đáp ứng với tín hiệu của một lọai vi khuẩn sau đây.

Tín hiệu tại chỗ (cục bộ) và khoảng cách dài

Giống như những tế bào nấm men, trong cơ thể đa bào, các tế bào thường giao tiếp thông qua các chất truyền tín hiệu hóa học (chemical messenger) nhắm đến các tế bào có thể hoặc không liền kề nhau gần như ngay lập tức. Các tế bào còn có thể truyền tin bằng tiếp xúc trực tiếp. Cả hai lọai động vật và thực vật có những cấu trúc liên kết tế bào (cell junction), kết nối trực tiếp tế bào chất của những tế bào kề cận nhau. Trong những trường hợp này, những chất dẫn truyền tín hiệu (signaling substance) hòa tan trong bào tương có thể vượt qua giữa các tế bào nằm sát nhau một cách tự do. Hơn nữa, tế bào động vật có thể truyền thông tin thông qua tiếp xúc trực tiếp giữa màng – ranh giới tế bào – các phân tử bề mặt, sự tiếp xúc này xảy ra trong một quá trình được gọi là quá trình nhận diện tế bào – tế bào (cell – cell recognition). Lọai tín hiệu này quan trọng trong các quá trình, như là quá trình phát triển của phôi và đáp ứng miễn dịch.

Hình 43.3: Quá trình giao tiếp giữa vi khuẩn, lọai vi khuẩn sống trong đất được gọi là myxobacteria sử dụng những tín hiệu hóa học để chia sẻ thông tin về khả năng dinh dưỡng. Khi thức ăn khan hiếm, những tế bào bị đói sẽ tiết ra một phân tử – phân tử này tiếp cận các tế bào lân cận và kích họat các vi khuẩn tập hợp lại. Các tế bào hình thành nên một cấu trúc được gọi là bào tử (fruiting body), hình dạng này sản xuất nên một bào tử thành dày có thể sống sót đến khi môi trường cải thiện. Vi khuẩn được cho thấy ở đây là Myxococcus xanthus.

Trong nhiều trường hợp khác, phân tử truyền tín hiệu (messenger molecule) được tiết ra bởi tế bào truyền tín hiệu (signaling cell). Một số di chuyển chỉ trong khoảng cách ngắn, như phân tử điều hòa cục bộ (local regulator)ảnh hưởng các tế bào trong vùng lân cận. Một loại chất điều hòa tại chỗ ở động vật quan trọng là yếu tố tăng trưởng (growth factor), nó bao gồm các hợp chất kích hoạt tế bào đích gần kề phát triển và phân chia. Đông đảo các tế bào có thể nhận và đáp ứng đồng thời các yếu tố tăng trưởng (GF), mà các GF này được sản xuất từ một tế bào duy nhất lân cận. Lọai truyền tín hiệu tại chỗ này ở động vật được gọi là “truyền tín hiệu cận tiết” (paracrine signaling).

Hình 43.4: Giao tiếp bằng tiếp xúc trực tiếp giữa các tế bào.

Hơn nữa, có nhiều loại hệ thống truyền tín hiệu tại chỗ khác (local signaling), một trong số đó là “hệ thống truyền tín hiệu thông qua khe synapse” (synaptic signaling) xảy ra ở hệ thần kinh của động vật. Hệ thống truyền tín hiệu điện dọc theo sợi thần kinh khởi động sự tiết tín hiệu hóa học (chemical signal) – được mang lại bởi các phân tử của chất dẫn truyền thần kinh. Các phân tử này khuếch tán xuyên qua khe synapse, khoảng hẹp giữa tế bào thần kinh và tế bào đích của nó (một tế bào thần kinh khác). Chính chất dẫn truyền thần kinh sẽ kích hoạt tế bào đích.

Cả động vật lẫn thực vật sử dụng các chất hóa học đựoc gọi là hormones cho hệ thống truyền tín hiệu khoảng cách dài (long – distance signaling). Trong hệ thống truyền tín hiệu bằng hormone (hormone signaling) ở động vật, còn được biết như là “hệ thống truyền tín hiệu thông qua con đường nội tiết” (endocrine signaling), các tế bào biệt hóa phóng thích các phân tử hormone, các phân tử này theo hệ tuần hoàn đến các tế bào đích trong cơ thể. Các hormones dao động rất lớn về kích thước và lọai phân tử, bởi vì đóng vai trò như những chất điều hòa tại chỗ (local regulator). Ví dụ, cây hormone ethylene (the plant hormone ethylene), chất khí thúc đẩy trái cây chín và giúp điều hòa sự tăng trưởng, là một loại hydrocarbon chỉ có sáu nguyên tử (C2H4), đủ nhỏ để xuyên qua thành tế bào. Ngược lại, hormone insulin của động vật có vú, điều hòa đường huyết, là một proteine với hàng ngàn nguyên tử.

Đọc toàn bộ bài viết tại đây.

Một số ebook Nội Thận tuyển chọn – DSYS

Sau đây là mục lục một số quyển sách về Thận – Tiết niệu mà mình có. Link download các bạn xem ở các post phía dưới.

1. ABC of Kidney Disease 2007
2. ABC of Urology 2nd
3. Atlas of Diseases of Kidney
4. Brenner and Rector’s The Kidney 9th
5. Chronic Kidney Disease, Dialysis, and Transplantation – A Companion to Brenner and Rector’s The Kidney
6. Comprehensive Clinical Nephrology 4th
7. CURRENT Diagnosis & Treatment Nephrology & Hypertension
8. Diseases of the Kidney & Urinary Tract, 8th 2007
9. Evidence-based Nephrology, 2009
10. Fundamentals of Renal Pathology
11. Graff’s Textbook of Routine Urinalysis and Body Fluids 2nd 2011
12. Handbook of Fluid, Electrolyte, and Acid-Base Imbalances 3rd
13. Hepinstall’s Pathology of the Kidney 6th
14. Manual of Nephrology 7th
15. Molecular and Genetic Basis of Renal Disease – A Companion to Brenner and Rector’s The Kidney
16. Nephrology Secrets 3rd 2012
17. Pocket Companion to Brenner and Rector’s The Kidney
18. Primer on Kidney Diseases 5th 2009
19. Smith’s General Urology 17th
20. The Renal System at a Glance 3rd
21. Urinary Stone Disease
22. Urology Board Review 3rd
23. Vander’s Renal Physiology 7th

Các bạn vui lòng đăng kí thành viên diễn đàn và vào đây để download nhé!

Một số ebook Huyết học tuyển chọn – DSYS

Mình xin chia sẻ một số ebook về Huyết học. Danh sách sẽ cập nhật tại đây. Link download các bạn xem phía dưới nhé.

  1. Anemias and Other Red Cell Disorders.pdf
  2. Atlas of Clinical Hematology 6th.pdf
  3. Blood Cells – A Practical Guide 4th.pdf
  4. Bone Marrow – A Practical Manual.pdf
  5. Clinical Aspects and Laboratory – Iron Metabolism Anemias 6th.pdf
  6. Clinical Hematology – Theory and Procedures 5th.pdf
  7. Clinical Malignant Hematology.pdf
  8. Foundations of Manual Lymph Drainage 3rd.pdf
  9. Handbook of Hematologic Pathology.pdf
  10. Hematopathology.pdf
  11. Hematopathology, 2nd – Eric D Hsi.chm
  12. Immune Hemolytic Anemias 2nd.pdf
  13. Immunohematology – Principles and Practice 3rd.pdf
  14. Iron Physiology and Pathophysiology in Humans.pdf
  15. Leukaemia Diagnosis 4th.pdf
  16. Management of Hematologic Malignancies.pdf
  17. Manual of Clinical Hematology 3rd.chm
  18. Murphy Practical Transfusion Medicine 3rd.pdf
  19. Myeloid Malignancies – An Atlas of Investigation and Diagnosis.pdf
  20. Myeloproliferative Neoplasms – Biology and Therapy.pdf
  21. Myeloproliferative Neoplasms – Critical Concepts and Management.pdf
  22. Phlebotomy – From Student to Professional 3rd.pdf
  23. Platelets in Thrombotic and Non-Thrombotic Disorders.pdf
  24. Rossi’s Principles of Transfusion Medicine 4th.pdf
  25. Textbook of Hemophilia 2nd.pdf
  26. Thrombin Physiology and Disease.pdf
  27. William’s Hematology 8th.chm
  28. Wintrobe’s Clinical Hematology 12th.CHM

Các bạn vui lòng vào diễn đàn đăng kí và tải sách tại đây nhé!